四lskra

User 's Manual

EN

Energy meters WM1x6A
Single-phase electrical energy meter
WM1-6A
Single-phase electrical energy meter WM1M6A

Single-phase electrical energy meter

WM1x6A

Security Advices and Warnings

Please read this chapter carefully and examine the equipment carefully for potential damages which might arise during transport and to become familiar with it before continue to install, energize and work with a single-phase energy meter WM1x6A.
This chapter deals with important information and warnings that should be considered for safe installation and handling with a device in order to assure its correct use and continuous operation.
Everyone using the product should become familiar with the contents of chapter »Security Advices and Warnings«.
If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

PLEASE NOTE

This booklet contains instructions for installation and use of single-phase energy meter WM1x6A. Installation and use of a device also includes handling with dangerous currents and voltages therefore should be installed, operated, serviced and maintained by qualified personnel only. ISKRA Company assumes no responsibility in connection with installation and use of the product. If there is any doubt regarding installation and use of the system in which the device is used for measuring or supervision, please contact a person who is responsible for installation of such system.

Before switching the device ON

Check the following before switching on the device:

- Nominal voltage.
- Terminals integrity.
- Protection fuse for voltage inputs (recommended maximal external fuse size is 65 A).
- External switch or circuit breaker must be included in the installation for disconnection of the devices' power supply. It must be suitably located and properly marked for reliable disconnection of the device when needed.
- Proper connection and voltage level of I/O module.

Used symbols on devices' housing and labels

| EXPLANATION |
| :--- | :--- |
| DANGER |
| Indicates proximity of hazardous high voltage, which might result in serious injury |
| or death if not handled with care. |

Compliance of the product with European CE directives.

Compliance of the product with UK Conformity Assessed (UKCA) directives.

Disposal

It is strongly recommended that electrical and electronic equipment (WEEE) is not deposit as municipal waste. The manufacturer or provider shall take waste electrical and electronic equipment free of charge. The complete procedure after lifetime should comply with the Directive 2002/96/EC about restriction on the use of certain hazardous substances in electrical and electronic equipment.

Table of contents

\qquad
1.1 Description of the device 2
1.2 SINGLE-PHASE ENERGY METERS APPLICATION 3
1.3 Main features 3
2 CONNECTION4
2.1 Mounting 5
2.2 Electrical connection 6
3 FIRST STEPS 9
3.1 DISPLAY OF DEVICE INFO 10
3.2 LCD User Interface 11
3.3 Limits 18
3.4 Freeze counters 22
4 SETTINGS 24
4.1 INTRODUCTION 25
4.2 MiQen software 25
4.3 Devices management 26
4.4 Device settings 27
4.5 Real-time measurements 29
4.6 Data analysis 31
4.7 My devices 31
4.8 Software upgrading 31
5 MEASUREMENTS 32
5.1 Introduction 33
5.2 Selection of available QUANTities 34
5.3 CALCULATION AND DISPLAY OF MEASUREMENTS 35
6 TECHNICAL DATA 37
6.1 Accuracy 38
6.2 Mechanical characteristics of input 38
6.3 ELECTRICAL CHARACTERISTICS OF INPUT 38
6.4 SafETY AND AMBIENT CONDITIONS 41
6.5 EU DIRECTIVES CONFORMITY 42
6.6 DIMENSIONS 42
7 ABBREVIATION/GLOSSARY 43
8 APPENDICES 44
8.1 APPENDIX A: MODBUS COMMUNICATION PROTOCOL 44
8.2 APPENDIX B: M-BUS 57
8.3 APPENDIX C: Equations 59

1 BASIC DESCRIPTION AND OPERATION

The following chapter presents basic information about a single-phase energy meter WM1x6A required to understand its purpose, applicability and basic features connected to its operation.
In this chapter you will find:
1.1 DESCRIPTION OF THE DEVICE 2
1.2 SINGLE-PHASE ENERGY METERS APPLICATION 3
1.3 Main features 3

1.1 Description of the device

The single-phase energy meters WM1-6A, WM1M6A (MID certified) are intended for energy measurements in single-phase electrical power network and can be used in residential, industrial and utility applications. Meters measure energy directly in 2-wire networks according to the principle of fast sampling of voltage and current signals. A built-in microprocessor calculates active/reactive/apparent power and energy, current, voltage, frequency, power factor, power angle and frequency from the measured signals. This smart meter can also perform basic harmonic analysis (THDU, THDI). This enables quick overview of harmonic distortion either coming from a network or generated by the load.
Microprocessor also controls LCD, LED, IR communication and optional extensions.
Connecting terminals can be sealed up against non-authorised access with protection covers. They are built to be fastened according to EN 60715 standard.

1.1.1 Appearance

Figure 1: Appearance of single-phase electric energy meter WM1x6A

1 Current terminals - to load
Information display IR COMM PORT -ON SIDE
DIN-Rail fitting
5 User button and LED indicator (1000 imp/kWh)
6 Current terminal - source (max 65 A)
7 AUX terminals (options):

- RS485
- M-BUS
- TARIFF INPUT

LCD

Number of digits:	$8(7+1)$
Height of digits:	4.52 mm

LED
Colour: red
Pulse rate: $\quad 1000 \mathrm{imp} / \mathrm{kWh}$
LED on: no load indication

1.2 Single-phase energy meters application

Energy meters have built-in optical (IR) communication port on the side as a standard. Special WM-USB adapter (size 1 DIN module) can easily be attached to it. It can be used for direct communication with a PC to change settings of devices without any communication installed. A built-in pulse output is designed for sending data to the devices for checking and monitoring consumed energy.
Energy meters could also be connected with iHUB-L1 or Bicom by optical communication (IR).
Optional the meter can be equipped with the following communications:
$>$ RS485 serial communication with the MODBUS protocol,
> M-BUS serial communication,
Communication modules enables data transmission and thus connection of the measuring places into the network for the control and management with energy.
Instead of communication modules, there can be also tariff input (option).
Tariff input provides measurement of two tariffs for selected energy registers.
On the housing there are only two terminals, thus only one functional extension is possible (serial communication, tariff input or M-bus).

1.3 Main features

- Single-phase direct connected DIN-rail mounting meters up to maximum current ($\mathbf{I}_{\max }$) $65 \mathbf{A}$.
- Basic current (I_{b}) 5 A.
- MID approval (option for WM1M6A).
- Class 1 for active energy according to EN 62053-21 and B according to EN 50470-3 .
- Class 2 for reactive energy according to EN 62053-23.
- Reference frequency $\mathbf{5 0 ~ H z}$ and $\mathbf{6 0 ~ H z}$.
- Bidirectional energy measurement (import/export).
- Reference voltage $230 \mathrm{~V}\left(\mathrm{U}_{\mathrm{n}}\right)$.
- Voltage operating range ($-20 \% \ldots+15 \%) \mathrm{U}_{\mathrm{n}}$.
- Pulse output according to EN 62053-31.
- Tariff input (option).
- RS485 serial communication (option).
- M-BUS serial communication (option).
- Display LCD 7+1 digit (100 Wh resolution).
- Multifunctional front LED.
- LED constant $1000 \mathrm{imp} / \mathrm{kWh}$.
- Built-in optical (IR) communication port.
- Measurement of
- power (active, reactive, apparent),
- energy (active/reactive/apparent).
- Voltage.
- Current.
- Frequency.
- Power factor.
- Power angle.
- Active tariff (option).
- THD of voltage.
- THD of current.
- 2-DIN rail width mounting according to EN 60715.
- Sealable terminal cover.

2 CONNECTION

This chapter deals with the instructions for single-phase electrical energy meter WM1x6A connection. Both the use and connection of the device includes handling with dangerous currents and voltages. Connection shall therefore be performed ONLY by a qualified person using an appropriate equipment. ISKRA, d.o.o. does not take any responsibility regarding the use and connection. If any doubt occurs regarding connection and use in the system which device is intended for, please contact a person who is responsible for such installations.
In this chapter you will find:
2.1 Mounting 5
2.2 ELECTRICAL CONNECTION 6

2.1 Mounting

Singlee-phase electrical energy meter WM1x6A is intended only for DIN-rail mounting. In case of using the stranded wire, the ferrule must be attached before the mounting. Ferrule contact length should be 18 mm .

Figure 2: Dimensional drawing and rear connection terminals position

2.2 Electrical connection

Figure 3: Electrical diagram $230 V_{A C}$

WARNING

Wrong or incomplete connection of voltage or other terminals can cause non-operation or damage to the device.

- To prevent electrical shock and/or equipment damage, disconnect electrical power at the main fuse or circuit breaker before installation or any servicing.
- Make sure, that no voltage is present in the installation.
- Prevent the disconnecting device from being switched on accidentally.
- Connect the module according to electrical diagram.

Meter is used for direct connection into the two-wire networks. Meter can be equipped with different modules. Pictures below are showing equipped combinations.
Recommended installation:
1 Mounting to DIN rail according to DIN EN60715
2 Power contacts:
a. Power contacts capacity:

Flexible (Rigid) $\quad 1.5 \mathrm{~mm}^{2}-16^{*}$ (25) mm^{2} (*Ferrule contact length should be 18 mm . Wire stripped to 20 mm .)
b. Connection screws M5
c. Max torque 3.5 Nm

3 Auxiliary terminals:
a. Auxiliary terminals contact capacity

Flexible (Rigid) $\quad 0.05 \mathrm{~mm}^{2}-1(2.5) \mathrm{mm}^{2}$
b. Auxiliary terminals screws M3
c. Max torque 0.6 Nm

PLEASE NOTE

Neutral wire must be connected to the meter.

Mark	Meaning
L_{I}	Live input
N_{I}	Neutral input
Lo	Live output
N_{0}	Neutral output

Figure 4: Connection diagram for M-BUS option

Complete WM1x6A system is assembled with three units:

- Current and voltage capture unit.
- Measurement and processing unit (MAPU) with SMPS or capacitor power supply unit, IR communication, LED indicator, LCD support and EEPROM.
- Communication unit (MODBUS RS485, M-BUS, TARIFF) WITH Pulse output.

2.2.1 Communication connection

For communication with outside world multiple manners are used:

- IR communication module using MODBUS protocol is equipped on each meter. It can be used for setting and testing the meter using WM-USB adapter.
- Pulse output (option) module is used for counting number of pulses depending on consumed energy.
- Tariff input (option) module is used to set active tariff.
- LED diode is used for indication of no-load condition ($1<0,02 A$) and test output proportional to measured active energy ($1000 \mathrm{imp} / \mathrm{kWh}$). It can be also switched to reactive energy for test purpose using IR communication.
- RS485 (option) communication module is galvanic isolated form the meter. It enables setting the meter, data readout in the network and tariff setting.
- M-BUS (option) communication module is galvanic isolated form meter. It enables setting the bound rate and the address of the meter (for more informations see appendix 8.2).
- Push button is used to select display of desired measured or group of them.

Table 1: Survey of communication connection

Auxiliary terminal	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
M-Bus	SO+	SO-	NC	M+	M-
Tariff input	SO+	SO-	NC	AC1	AC2
RS485*	SO+	SO-	NC	A	B

*It is recommended to use ferrite bead on communication line RS485 (two turns) to reduce radiated emission.

PLEASE NOTE

Check labels on the side of the meter to check what modules are built in.

3 FIRST STEPS

Programming a single-phase electrical energy meter WM1x6A is very transparent and user friendly Numerous settings are organized in groups according to their functionality.
In this chapter you will find basic programming steps:
3.1 DISPLAY OF DEVICE INFO 10
3.2 LCD USER Interface 11
3.3 LIMITS 18
3.4 Freeze counters 22

FIRST STEPS

3.1 Display of device info

On LCD measured data are presented. Display scrolls automatically. Displayed quantities and scroll time can be set via communication by MiQen software. Energy meters have LCD display with following layout.

1 Tariff setting for displayed counter/actual tariff
$2(\rightarrow)$ Energy import/active power import

- $\quad(\leftarrow)$ Energy export/active power export

3 kWh display
4 kvarh display
5 Actual Value
6 Info:
VAh display
PF - power factor
VA - apparent power
PA - power angle
7 A - currently active counter, $n r$ - non resettable counter or r - resettable counter

8 W - active power
var - reactive power
9 Inductive or capacitive load

Energy registers are displayed with resolution $7+1$ (kWh, kvarh and kVAh). The meter can be set to Test measuring mode which displays energy registers with better resolution. The test mode is used for test purposes during type testing and test of meter constant during initial verification. After power off meter automatically goes back to normal operation.

3.1.1 Welcome screens

Segment check

T12 \rightleftarrows kWh kvarh OUMOUMO日 k 1019

Built version

3.2 LCD User Interface

After the electrical connection, the display shows a welcome screen for two seconds then the firmware version for the next two seconds. The following is a measurement screen automatically cycling on the screen, regarding the period that is defined in settings. The cycling period and required measurement could be set factory or in MiQen software.

Regarding the period that is defined in settings, measurement screen cycling is started until any key is pressed.

The LCD display allows displaying the following measurement values:
1 Energy registers. Two different types (resettable and non-resettable), both of them count the same quantity. The resettable energy counter can be reset, while the non-resettable has been measuring the quantity continuously. The energy counter you reset starts to re-measure the value from the zero value.
I. Resetable energy counters
i. Energy counter 1 (default)
ii. Energy counter 2
iii. Energy counter 3
iv. Energy counter 4
II. Non resetable energy counters
i. Energy counter 1
ii. Energy counter 2
iii. Energy counter 3
iv. Energy counter 4

2 Actual measured values

I. Active Power
II. Reactive Power
III. Apparent Power
IV. Power Factor
V. Voltage
VI. Frequency
VII. Current
VIII. Power Angle

The measured values can be scrolled automatically or can be selected by pressing button.

3.2.1 Energy counters

Energy counters are represented as shown on LCD examples bellow (up to 4 resetable counters, letter representing it). At the top of the screen is settings of energy counter (tariff, import/export/total, active/reactive/apparent), the 8-digit numerical number shows the value of the energy and the letter at the bottom shows actual activity (counting (A)/not counting ()).

counter 1

counter 2

counter 3

counter 4

Non-MID meters show resettable counters (letter representing it).

counter 1

counter 2

counter 3

counter 4

MID meters show non resettable counters (letters nr representing it).
Counter 1 shows: Import Active Energy = 6250.3 kWh at Tarif 2.
Counter 2 shows: Export Active Energy $=70352.5 \mathrm{kWh}$ at Tarif 1.
Counter 3 shows: Total Active Energy $=2369025.3 \mathrm{kWh}$ at both Tarif 1 and 2.
Counter 4 shows: Total Active Energy $=105101.5 \mathrm{kWh}$ at Tarif 1.

3.2.2 Other counters

The number on the screen shows the actual value of the measured quantity ($\mathrm{P}-\mathrm{W}, \mathrm{Q}-\mathrm{var}, \mathrm{S}, \mathrm{PF}, \mathrm{U}, \mathrm{f}$ and I). On the screen as well is the direction of active energy flow (import/export), reactance (inductive/capacitive) and active tariff (regarding tariff input).

Active power:

Current:

Voltage:

Reactive power:

Apparent power:

Power factor:

Power angle:

Frequency:

3.2.3 Display menu structure

The display menu is entered by holding the push button for more than one second. Blinking of the screen indicates that. Short clicks then move user through the main menu.

By holding the button when positioned on certain screen (e.g. counter menu, set, info, etc...) the Set sub-menu is entered.

3.2.3.1 Set sub-menu

When in set sub-menu, short clicks move user through it, allowing her/him to select a dedicated menu.

The screens 3.2 to 3.4 appear only in case the actual option is available on the meter.
3.2.3.1.1 Reset counters menu

Holding button on any of screens 3.1.1 through 3.1.5 resets any of counters or all of them respectively.

3.2.3.1.2 RS485 menu

Screen 3.2.1 shows the address of RS485 communication and screen 3.2.2 shows the baud rate.

3.2.3.1.3 M-bus menu

Screens 3.3.1 shows the primary address of M-bus communication, screen 3.3.2 shows baud rate and screen 3.3.3 shows the secondary address.

3.2.3.1.4 Wi-Fi menu

Screen 3.4.1 shows Wi-Fi status, screen 3.4.2 shows IP address of gateway module and screeen 3.4.3 resets the Wi-Fi.

3.2.3.1.5 Z-Wave menu

Screen 3.5.1 shows S2 security inclusion PIN number.

3.2.3.2 Info sub-menu

When in info sub-menu, short clicks move user through it, allowing her/him to get required information about smart meter.

Screen 4.1 shows the serial number of the smart meter.
Screen 4.2 shows the software version present on smart meter.
Screen 4.3 shows CRC code and below the number of Firmware upgrades.
Screen 4.4 shows CRC of parameters and below the number of times the WM1M6A (MID version) was unlocked.
Screen 4.5 shows operating time (days:hour:minute) of WM1-6A.
Screen 4.6 shows initial LCD screen with all segments on.
Screens 4.7 through 4.9 show software versions of each of phase modules.

3.2.4 Set device ModBus address

Non configured devices have the same factory Modbus address set to 33 . One of the options for changing the Modbus address is the following. Holding the button for more than 6 seconds, the energy meter will switch to Modbus address configuration mode (you will see the screen below).

During this time, the WM1-6A responds to the 149 address via the ModBus. The
COnF 8.
device remains in configuration mode until the ModBus address is modified or
when 3 minutes pass or with a long press of 1 second to 3 seconds.
The purpose of the procedure is to modify Modbus address in case if you want to connect more devices with the same address to the RS485 network.

3.2.5 ZWave inclusion

WM1-6A that has a built-in ZW module supports LCD menu that allows inclusion or exclusion into ZWave network. Holding the button for more than 6 seconds, the energy meter will switch to inclusion or exclusion ZWave mode and LCD shows the following menu:

Holding button on screen 5.1 include or exclude ZWave from network. Holding button on screen 5.2 resets ZWave module.

3.3 Limits

WM1-6A has a built-in limit function which can control the bistable relay using IR communication. The user can set one or two logically combined limits.
1 The following logic operations can be selected:

- Limit A
- Limit B
- Limit A AND Limit B
- Limit A OR Limit B

2 Limit function can monitor the following measured values:

- Voltages: U_{1}
- Currents: I_{1}
- Active power: P_{1}
- Reactive Power: Q_{1}
- Apparent Power: A_{1}
- Frequency
- Energy: Counter1, Counter2, Counter3, Counter4

Limits can be set by setting the correct Modbus registers.

3.3.1 Limit A

User can set the ON state of an output A, when the threshold is reached (any from the above specified measured values can be set as a threshold). Likewise the OFF state can be set, when the same measured value falls below the OFF state threshold. Optionally the delay time can be set (the time between reaching a threshold and setting output A).

Figure below (example 1) shows the example using U1 as a limit A and delay time $\mathrm{t}_{\text {delay }}$.

example 1

3.3.2 Limit B

User can set the OFF state of an output B, when the threshold is reached (any from the above specified measured values can be set as a threshold). Likewise the ON state can be set, when the same measured value falls below the ON state threshold. Optionally the delay time can be set (the time between reaching a threshold and setting output B).

Figure below (example 2) shows the example using Ptot as a limit B and no delay time.

example 2

Limit A AND Limit B

Limit A AND Limit B is a logical operation, which sets the output A AND B ON, when both output A and output B are in ON.
Figure below (example 3) shows the example of output A AND B being ON. For clearer picture refer also to output A (example 1) and output B (example 2) figures.

Limit A OR Limit B

Limit A OR Limit B is a logical operation, which sets the output A OR B ON, when any of output A or output B is ON .
Figure below (example 4) shows the example when output A OR B is ON. For clearer picture refer also to output A (example 1) and output B (example 2) figures.

Following Modbus registers define Limit function:

OutTypes:

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Un = Modbus register 30015
In = Modbus register 30017
$\mathrm{Pn}=\mathrm{Un}$ * In
$\mathrm{Fn}=55 \mathrm{~Hz}$

FIRST STEPS

3.4 Freeze counters

3.4.1 Meaning

Since WM1-6A energy meter does not support internaly synchronised real-time clock (RTC) for the purpose of simultaneous capture of measurements, the freeze function is implemented. Use is enabled only when the meter is on.
Freeze function enables using WM1x6A smart meters for billing or sub-billing purposes and to compare sub-metering data with main energy meter. Reading several hundred serially connected counters can last more than 10 minutes. That is why WM1x6A supports command Freeze counters. Its purpose is to freeze data simultaneously on all devices in the network.
The freeze function operation is also performed in case of device power supply failure or device reset.

3.4.2 Set up

To perform the freeze function, the energy meters should be connected to the serial communication RS485 and belonging software which use Modbus registers.

The energy meter WM1x6A enables several ways to activate freeze function:

- Freeze status register,
- time to freeze register,
- auto freeze interval register

3.4.3 Time to freeze register (41902)

The purpose of the time to freeze register is to freeze all energy meters simultaneously. Set the number of time to freeze register (41902), the value of appropriate time (in seconds) before the time of the freeze and time of the freeze. After an expired time, the freeze command is executed automatically. Due to unreliability in communication, it is recommended that the desired time is sent more than ones, to ensure that freeze is simultaneous on all instruments. The desired time need to be sent in the interval of one minute.

For example, if you want that freeze function is executed at 10 am , run the command seven times, starting 7 s before 10 am and repeat it with a one second interval (see the picture below).

All instruments that received one of the commands will freeze at the same time. This is the advantage of the described register, so it is recommended to use it.

It is also possible to individually enter the appropriate time in register 41902 of each instrument.

3.4.4 Auto freeze interval register (41901)

The purpose of the auto freeze interval register is to freeze energy meters in the same time interval, for example, every day. Set the certain auto freeze interval (in minutes). Maximum allowed value is 65535 minutes. Periodic synchronization is activated automatically after the entered interval. If the interval is set to 0 , the auto freeze interval function is turned off.
The disadvantage of this register is that the time is not appropriate if the meters reset or in case of another failure.

3.4.5 Status register of freeze (41905)

The purpose of the status register is to test the reliability of RS485 communication. Enter the broadcast command of different identification codes between 1 to FFFD in the freeze status register (41905). Repeatedly send a different identification code to the freeze status register (41905) in order to increase the reliability of receiving commands. The reliability of reading different numbers of identification code enables analysis of communication reliability. In the case of 100% reliability of communication, all instruments have the value of the first sent identification code, when reading the status register.

After the instrument receives the identification code, it ignores all entries in the status register in the interval of one minute. Send as many different identification codes in a short time interval. For example, send the different identification codes ten times within one second. Use numbers from 1 to FFFD (165533). For example, first use value 1, then D, AAA and at the end FFFD (see picture below). Please note that you never know if all the meters will freeze, so send as many commands as possible within one minute.

PLEASE NOTE

Please do not use the values 0000, FFFF or FFFE. The 0000 is reserved to start the meter when connected to the power supply. Freeze function is performed. The FFFF is reserved to trigger freezing function automatically (same as time to freeze register 41902). The FFFE is reserved for the auto interval freeze.

Send the command for reading the register, so you can see which identification code has been accepted by the individual instrument. The server calculates time from a freeze of the device.

3.4.6 Access and interpretation of data

After the execution of the freeze command, the counters are stored into registers 41906 to 41938 , which can be read by the master. Register 41906 displays frozen tariff counter and registers 41907 to 41938 display frozen energy counters (1-16). The data we read on all devices can this way be compared. Encoded information should be read with Modbus table (see Appendix A). In addition, the time since the last freeze can be checked with time from freeze register $(41903,41904)$. The purpose of these register is to control if displayed measurements are relevant. The register contains time (in seconds) from the last freeze counters execution.

4 SETTINGS

A setting structure, which is similar to a file structure in an explorer is displayed in the left part of the MiQen setting window. Available settings of that segment are displayed in the right part by clicking any of the stated parameters.
In this chapter you will find detailed description of all WM1x6A features and settings. Chapter is organized in a way to follow settings organisation as in setting software MiQen.
4.1 INTRODUCTION25
4.2 MiQen software 25

4.1 INTRODUCTION

Parameterization can be modified by serial communication (RS485 or Mbus) or by a special WM-USB adapter (size 1 DIN module) and MiQen software version 2.0 or higher.

4.2 MiQen software

MiQen software is a tool for a complete programming and monitoring of ISKRA measuring instruments, connected to a PC via serial communication or by a special WM-USB adapter. A user-friendly interface consists of five segments: devices management (Connection), instrument settings (Settings), real-time measurements (Measurements), data analysis (Analysis), and software upgrading (Upgrades). These segments are easily accessed by means of five icons on the left side.
Two editions of MiQen software are available:
$>$ Professional edition with full functionality and supports all software functionality. CDKey is required for the installation.
$>$ Standard edition, freeware edition which supports all software functionality except data analysis.

Figure 9: MiQen programming and monitoring software

MiQen version 2.1 or higher is required for programming and monitoring WM1x6A. Software installation is stored on a CD as a part of consignment or it can be downloaded from https://www.iskra.eu/en/Iskra-Software/MiQen-Settings-Studio/

PLEASE NOTE

MiQen has very intuitive help system. All functions and settings are described in Info window on the bottom of MiQen window.

4.3 Devices management

Figure 10: MiQen Device Management window
Use Scan the network explorer to set and explore the network of the device. Communication parameters of all devices and their addresses in a network can be easily set. Selected devices can be added to the list of My devices.

Set Communication port parameters

Under Communication port current communication parameters are displayed. To change those parameters click on change settings button. A Communication port window opens with different communication interfaces.

Figure 11: Communication port window
WM1x6A supports only serial communication, so only serial communication parameters can be set.

Set device Modbus address number

Each device connected to a network has its unique Modbus address number. In order co communicate with that device an appropriate address number should be set.

Factory default Modbus address for all devices is 33 . Therefore it is required

```
#4.}\mathrm{ MiQen 2.1 - Setting Studio
Eile Iools View Help
```



```
ब2. Refresh Address: 33 to change Modbus address number of devices if they are connected in the network so each device will have its unique address number.

\section*{Start communicating with a device}

Click on REFRESH button and devices information will be displayed.

\section*{Searching}

Scan the network

When devices are connected to a network and a certain device is required it is possible to browse a network for devices. For this purpose choose Scan the network.

\subsection*{4.4 Device settings}

Multi Register Edit technology assures a simple modification of settings that are organized in a tree structure. Besides transferring settings into the instrument, storing and reading from the setting files is also available.

\subsection*{4.4.1 General settings}

General settings set the LCD properties and Security settings (passwords).
Description and location segment is intended for easier recognition of a certain unit. They are especially used for identification of the device or location on which measurements are performed.
LCD Mode defines whether displayed values automatically cycle between different measurands or display only one measurement.
LCD Cycling period sets the period of cycling, valid values from 5 s to 60 s .
LCD measurements sets the measurements displayed on the LCD. A user can select them on the dropdown menu (Counter1 is Preset and is mandatory selected):


Figure 12: Set of optional measurements

Operating Mode segment is intended for selection between Normal Mode and various test modes. After reset or power cycle meter starts in Normal Mode.

\subsection*{4.4.1.1 Communication}

Communication segment is intended for setting the serial communication parameters (M-Bus or RS485).

\subsection*{4.4.1.2 Security}

A password consists of four letters taken from the British alphabet from A to Z . When setting a password, only the letter being set is visible while the others are covered with *.
Settings parameters are divided into single groups regarding security level: PL1 >password level 1, PL2 >password level 2 and BP >a backup password.

\section*{PLEASE NOTE}

A serial number of device is stated on the label and is also accessible with MiQen software. It can be found on the LCD under info sub-menu as well.

\section*{Password-Level 1 >PL1}

Password for first level is required. It can be used only if Password - Level 2 is also applied. Available settings:
- Energy meters reset (locked on communication port and pushbutton)
- Active tariff settings

\section*{Password-Level 2 >PL2}

Password for second level is required. All settings are available.

\section*{A Backup Password->BP}

A backup password \(>B\) P is used if passwords at level \(2>P L 2\) has been forgotten, and it is different for each device, depending on a serial number of the device. The BP password is available in the user support department in ISKRA d.o.o., and is entered instead of the password PL1 or/and PL2. Do not forget to state the device serial number when contacting the personnel in ISKRA, d.o.o..

\section*{Password locks time >min}

Password lock time is fixed - 1 minute.

\section*{Password setting}

A password consists of four letters taken from the British alphabet from A to Z.

\section*{Password modification}

A password is optionally modified; however, PL1 and PL2 password can be modified with access level of password PL2.

\section*{Password disabling}

A password is disabled by setting the "AAAA" password.

\section*{PLEASE NOTE}

A factory set password is "AAAA" at both access levels >PL1 and PL2. This password does not limit access.

\subsection*{4.4.2 ENERGY}

\section*{Active tariff}

Switching between tariffs is done with a tariff input or by selecting values in a drop-down menu.

\subsection*{4.4.2.1 Counters}

There are four pairs of counters, which are user configurable. Each counter setting applies to one resetable and one non-resetable counter. User can set Active, Reactive, Apparent Energy, energy flow direction and tariff. In Custom setting there are additional options for measurment in individual quadrants and energy measurement for individual phases.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{14}{*}{} & & \multicolumn{2}{|l|}{WM1-6A, Serial number: 11223344, Read at 08:06:16} \\
\hline & Setting & Value & \\
\hline & Counter 1 & & \\
\hline & Measured Energy & Import Active Energy (Wh) & \(\checkmark\) \\
\hline & Taiff Selector & - & \\
\hline & Counter 2 & & \\
\hline & Measured Energy & Total Absolute Reactive Energy (varh) & \\
\hline & Taiff Selector & - & \\
\hline & Counter 3 & & \\
\hline & Measured Energy & Total Absolute Apparent Energy (VAh) & \\
\hline & Taiff Selector & - & \\
\hline & Counter 4 & & \\
\hline & Measured Energy & Export Active Energy (Wh) & \\
\hline & Taiff Selector & - & \\
\hline
\end{tabular}

Figure 14: MiQen energy counters

\section*{WARNING!}

In case of modification of energy parameters during operation, the values of energy counters
 must be recorded to avoid wrong interpretation of readings.

IR Relay operating mode defines how WM1x6A controls external bistable switch BI432 via proprietery IR communication. Available modes are: Not Connected, Manual and Limit control. Preset is Not connected, Manual mode enables control of BI432 via RS485 communication, Limit Control enables WM1x6A internal set limits for switching BI432. For a more precise description of Limits please see chapter Limits on page 46 .
Resetting counters function is applicable only for four resettable counters. MID approval applies only to parallel non-resettable counters, which can not be reset.
\begin{tabular}{|l|l}
\hline Setting & Value \\
\hline Reset energy counter E1 & No \\
\hline Reset energy counter E2 & No \\
\hline Reset energy counter E3 & No \\
\hline Reset energy counter E4 & No \\
\hline
\end{tabular}

Figure 13: MiQen reset counters

\subsection*{4.5 Real-time measurements}

Measurements can be seen ONLINE when device is connected to aux. power supply and is communicating with MiQen. When device is not connected it is possible to see OFFLINE measurements simulation. The latter is useful for presentations and visualisation of measurements without presence of actual device.
In ONLINE mode all supported measurements and alarms can be seen in real time in a tabelaric form. All data can be exported to an Access database, Excel worksheets or as a text file.


For further processing of the results of measurements, it is possible to set a recorder (
Recorder button) on active device that will record and save selected measurements to MS Excel .csv file format.


Figure 17: Measurements Recorder

\subsection*{4.6 Data analysis}


\section*{PLEASE NOTE}

The energy meter WM1x6A do not support data analysis.

\subsection*{4.7 My devices}

My devices section enables the personal selection of devices.

\subsection*{4.8 Software upgrading}

MID version does not support software upgrade.
Always use the latest version of software, both MiQen and software in the device. The program automatically informs you about available upgrades (device firmware upgrades and MiQen software upgrades) that can be transferred from the web site and used for upgrading.

\section*{PLEASE NOTE}

MiQen cannot be used for execution of firmware upgrades of devices. It only informs that new version is available and offers link to download it from the server. Software for execution of firmware upgrades is included in downloaded zip file together with upgrade file, upgrade procedure description and revision history.

\section*{PLEASE NOTE}

More information about MiQen software can be found in MiQen Help system!

In order to modify instrument settings with MiQen, current parameters must be loaded first. Instrument settings can be acquired via a communication link (serial or USB to IR adapter) or can be loaded off-line from a file on a local disk. Settings are displayed in the MiQen Setting Window - the left part displays a
 hierarchical tree structure of settings, the right part displays parameter values of the chosen setting group.

\section*{PLEASE NOTE}

Supported settings and functions depend on the type of device.

\section*{5 MEASUREMENTS}

The WM1-6A is bidirectional energy meter measures voltage and current. From which it is able to calculate two quantities, imported and exported energy. The WM1-6A energy meter performs measurements with a sampling frequency equal to \(3906,25 \mathrm{~Hz}\).
5.1 AcCuracy ..... 38
5.2 Mechanical characteristics of input ..... 38
5.3 ELECTRICAL CHARACTERISTICS OF INPUT ..... 38
5.4 SAFETY AND AMBIENT CONDITIONS ..... 41

\subsection*{5.1 Introduction}

\subsection*{5.1.1 Online measurements}

Online measurements are available on display or can be monitored with setting and monitoring software MiQen.

Readings on display are performed continuously with refresh time dependent on set average interval whereas rate of readings monitored with MiQen is fixed and refreshed approx. each second.


Figure 27: Online measurements in tabelaric form

\subsection*{5.2 Selection of available quantities}

Microprocesor calculates the RMS voltage, RMS current, active, reactive and apparent power, power factor, power angle, first harmonic of voltage, first harmonic of current, THD of voltage and THD of current. Complete selection of available online measuring quantities is shown in a table below.
\begin{tabular}{|c|c|c|c|}
\hline Meas. type & Measurement & 1-phase & comments \\
\hline \multirow[t]{14}{*}{Phase measurements} & \multicolumn{2}{|l|}{Voltage} & \\
\hline & \(\mathrm{U}_{1 \_ \text {RM }}\) & V1ph & \\
\hline & \multicolumn{2}{|l|}{Current} & \\
\hline & I \({ }_{\text {_RM }}\) & V1ph & \\
\hline & Power & & \\
\hline & \(\mathrm{P}_{1 \_ \text {RMS }}\) & V1ph & \\
\hline & \(\mathrm{Q}_{1}\) RMS & V1ph[0] & reactive power can be calculated as a squared difference between S and P or as delayed sample \\
\hline & S_RMS & V1ph & \\
\hline & PF \({ }_{1 \_ \text {RMS }}\) & V1ph & \\
\hline & \(\varphi_{1 \_ \text {_RM }}\) & V1ph & PA - Power angle \\
\hline & Harmonic analysis & & \\
\hline & THD- \(\mathrm{U}_{1}\) & V1ph & \\
\hline & THD- \({ }_{1}\) & V1ph & \\
\hline & & & \\
\hline \multirow[t]{4}{*}{Metering} & Energy & V & \\
\hline & Counter E1-8 & V & Each counter can be dedicated to any of four quadrants ( \(P\)-Q, import-export, L-C). Total energy is a sum of one counter for all tariffs. Tariffs can be fixed, date/time dependent or tariff input dependent \\
\hline & ETOT_1-8 & V & \\
\hline & Active tariff & V & \\
\hline \multirow[t]{2}{*}{Other measurements} & \multicolumn{2}{|l|}{Miscellaneous} & \\
\hline & \multicolumn{2}{|l|}{Frequency} & \\
\hline \multirow[t]{3}{*}{Status} & \multicolumn{2}{|l|}{Checksum status} & \\
\hline & \multicolumn{2}{|l|}{External relay status} & \\
\hline & \multicolumn{2}{|l|}{Limit control status} & \\
\hline
\end{tabular}
[1] Further description is available in following subchapters
Table 2: Selection of available measurement quantities

\section*{5．3 Calculation and display of measurements}

This chapter deals with capture，calculation and display of all supported measurement quantities．For more information about display presentation see chapter 3．2 LCD User Interface．Only the most important equations are described；however，all of them are shown in a chapter APPENDIX C： EQUATIONS with additional descriptions and explanations．

\section*{5．3．1 Voltage}

Voltage related measurements are listed below：
\[
U_{f}=\sqrt{\frac{\sum_{n=1}^{N} u_{n}^{2}}{N}}
\]

All voltage measurements are available through communication as well as on standard or customized displays．

\section*{ニコ iこ in}

L1

\section*{5．3．2 Current}

Real effective（RMS）value of current．
\[
I_{R M S}=\sqrt{\frac{\sum_{n=1}^{N} i_{n}^{2}}{N}}
\]

All current measurements are available on communication as well as standard and customized displays on LCD．


L1

\section*{5．3．3 Active，reactive and apparent power}

Active power is calculated from instantaneous phase voltages and currents．All measurements are seen on communication or are displayed on LCD．For more detailed information about calculation see chapter APPENDIX C：EQUATIONS．


\subsection*{5.3.4 Power factor and power angle}

PF or distortion power factor is calculated as the quotient of active and apparent power for each phase separately and total power angle. It is called distortion power factor since true (distorted) signals are using in equation (all equations are presented in chapter APPENDIX C: EQUATIONS). A symbol for a coil (positive sign) represents inductive load and a symbol for a capacitor (negative sign) represents capacitive load.

\subsection*{5.3.5 Frequency}

Network frequency is calculated from time periods of measured voltage. Instrument uses synchronization method, which is highly immune to harmonic disturbances.

\subsection*{5.3.6 Energy counters}

Three different variants of displaying Energy counters are available:
- by individual counter,
- by tariffs for each counter separately and,
- energy cost by counter.

At a display of measured counter by tariffs, the sum in the upper line depends on the tariffs set in the instrument.

Additional information, how to set and define a counter quantity is explained in chapter Settings Energy.

\subsection*{5.3.7 Harmonic distortion}

WM1-6 energy meter calculates THD for current and voltage and is expressed as percent of high harmonic components regarding to fundamental harmonic.

\section*{6 TECHNICAL DATA}

In following chapter all technical data regarding operation of a single-phase electrical energy meter is presented.
5.1 ACCURACY 38
5.2 Mechanical characteristics of input 38
5.3 ELECTRICAL CHARACTERISTICS OF INPUT 38
5.4 SAFETY AND AMBIENT CONDITIONS 41

\subsection*{6.1 Accuracy}
\begin{tabular}{|c|c|}
\hline Measured values & Accuracy class \\
\hline \multirow[t]{4}{*}{Active energy:} & class 1 EN 62053-21 \\
\hline & class B EN 50470-3 \\
\hline & \(\pm 1.5 \%\) from \(I_{\text {min }}\) to \(I_{\text {tr }}\) \\
\hline & \(\pm 1 \%\) from \(I_{\text {tr }}\) to \(I_{\text {max }}\) \\
\hline \multirow[t]{3}{*}{Reactive energy:} & class 2 EN 62053-23 \\
\hline & \(\pm 2.5 \%\) from \(I_{\text {min }}\) to \(I_{\text {tr }}\) \\
\hline & \(\pm 2 \%\) from \(I_{\text {tr }}\) to \(I_{\text {max }}\) \\
\hline Voltage: & \(\pm 1 \%\) of measured value \\
\hline \multirow[t]{2}{*}{Current:} & \(\pm 1 \%\) of \(I_{\text {ref }}\) from \(I_{s t}\) to \(I_{\text {ref }}\) \\
\hline & \(\pm 1 \%\) of measured value from \(I_{\text {ref }}\) to \(I_{\max }\) \\
\hline \multirow[t]{2}{*}{Active Power:} & \(\pm 1 \%\) of nominal power ( \(\left.U_{n} * I_{\text {ref }}\right)\) from \(I_{s t}\) to \(I_{\text {ref }}\) \\
\hline & \(\pm 1 \%\) of measured value from \(I_{\text {ref }}\) to \(I_{\max }\) \\
\hline \multirow[t]{2}{*}{Reactive, Apparent power:} & \(\pm 2 \%\) of nominal power from \(I_{s t}\) to \(I_{\text {ref }}\) \\
\hline & \(\pm 2 \%\) of measured value from \(I_{\text {ref }}\) to \(I_{\text {max }}\) \\
\hline Frequency: & \(\pm 0.5 \%\) of measured value \\
\hline
\end{tabular}

\subsection*{6.2 Mechanical characteristics of input}

Rail mounting according DIN EN 60715. In case of using the stranded wire, the ferrule must be attached before the mounting. Ferrule contact length should be 18 mm .
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Terminals} & Max. conductor cross-sections \\
\hline \multirow[t]{4}{*}{Main inputs} & Contacts capacity flexible (rigit): & \begin{tabular}{l}
\[
1.5 \mathrm{~mm}^{2} \ldots 16^{*}(25) \mathrm{mm}^{2}
\] \\
*Ferrule contact length should be 18 mm . Wire stripped to 20 mm .
\end{tabular} \\
\hline & Connection screws: & M5 \\
\hline & Max torque: & 3.5 Nm (PZ2) \\
\hline & Length of removed isolation: & 10 mm \\
\hline \multirow[t]{4}{*}{Optional modules} & Contacts capacity: & \(0.05 \mathrm{~mm}^{2} \ldots 1(2.5) \mathrm{mm}^{2}\) \\
\hline & Connection screws: & M3 \\
\hline & Max torque: & 0.6 Nm \\
\hline & Length or removed isolation: & 8 mm \\
\hline
\end{tabular}

\subsection*{6.3 Electrical characteristics of input}

\section*{Inputs and outputs}

Measuring input
\begin{tabular}{|l|l}
\hline Type (connection): & single-phase (1b) \\
\hline Reference current \(\left(I_{\text {ref }}\right)\) & 5 A \\
\hline Maximum current \(\left(I_{\max }\right):\) & 65 A \\
\hline Minimum current \(\left(I_{\min }\right):\) & 0.25 A \\
\hline Transitional current \(\left(I_{\text {tr }}\right):\) & 0.5 A \\
\hline Starting current: & 20 mA \\
\hline Power consumption at \(I_{\text {ref }}\) & 0.1 VA \\
\hline Nominal voltage \(\left(U_{n}\right):\) & \(230 \mathrm{~V}(-20-+15) \%\) \\
\hline Power consumption at \(U_{n}:\) & \(<8 \mathrm{VA}\) \\
\hline Nominal frequency \(\left(f_{n}\right):\) & 50 Hz and 60 Hz \\
\hline \multicolumn{2}{|c}{\(\quad\) User's Manual }
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{Pulse output (option)} & Pulse rate: & \(1000 \mathrm{imp} / \mathrm{kWh}\) \\
\hline & Pulse duration: & \(32 \mathrm{~ms} \pm 2 \mathrm{~ms}\) \\
\hline & Rated voltage DC: & 27 V max \\
\hline & Switched current & 27 mA max \\
\hline & Standard: & EN 62053-31 (A\&B) \\
\hline \multirow[t]{4}{*}{M-BUS Serial communication (option)} & Type: & M-BUS \\
\hline & Speed: & \(300 \mathrm{bit} / \mathrm{s}\) to \(9600 \mathrm{bit} / \mathrm{s}\) (default \(2400 \mathrm{bit} / \mathrm{s}\) ) \\
\hline & Protocol: & M-BUS \\
\hline & Primary address: & O-(default) \\
\hline \multirow[t]{5}{*}{RS485 Serial communication (option)} & Type: & RS485 \\
\hline & Speed: & \(1200 \mathrm{bit} / \mathrm{s}\) to \(19200 \mathrm{bit} / \mathrm{s}\) (default \(19200 \mathrm{bit} / \mathrm{s}\) ) \\
\hline & Frame: & 8, N, 2 \\
\hline & Protocol: & MODBUS RTU \\
\hline & Address: & 33 - (default) \\
\hline \multirow[t]{7}{*}{Optical communication} & Type: & IR \\
\hline & Connection: & via WM-USB adapter \\
\hline & Speed: & \(19200 \mathrm{bit} / \mathrm{s}\) \\
\hline & Frame: & 8, N, 2 \\
\hline & Protocol: & MODBUS RTU \\
\hline & Address: & \[
33
\] \\
\hline & Remark: & All settings are fixed \\
\hline \multirow[t]{4}{*}{Tariff input (option)} & Rated voltage: & 230 V (+15 \%-20 \%) \\
\hline & Input resistance: & 450 kOhm \\
\hline & Rated voltage: & 230 V (+15 \%-20\%) \\
\hline & Maximum load current: & 50 mA \\
\hline
\end{tabular}

\subsection*{6.4 Safety and ambient conditions}

According to standards for indoor active energy meters.
Temperature and climatic condition according to EN 62052-11.
\begin{tabular}{|c|c|}
\hline Dust/water protection: & IP50 (For IP51 it should be installed in appropriate cabinet.) \\
\hline Operating temperature: & \(-25{ }^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C}\) (non-condensig humudity) \\
\hline Storage temperature: & \(-40^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}\) \\
\hline Enclosure: & self extinguish, complying UL94-V \\
\hline Indoor meter: & Yes \\
\hline Degree of pollution: & 2 \\
\hline Protection class: & 11 \\
\hline Installation category & 300 Vrms cat.III \\
\hline Standard: & IEC 62052-31 \\
\hline Mechanical environment: & M1 \\
\hline Electromagnetic environment: & E2 \\
\hline Humidity: & non condensing \\
\hline Weight (with packaging): & 150 g (170 g) \\
\hline Installation: & DIN Rail 36 mm \\
\hline Dimensions ( \(\mathrm{W} \times \mathrm{H} \times \mathrm{D}\) ): & \(36 \mathrm{~mm} \times 90 \mathrm{~mm} \times 64 \mathrm{~mm}\) \\
\hline Package dimensions (Wx \(\times\) D): & \(37 \mathrm{~mm} \times 91 \mathrm{~mm} \times 78 \mathrm{~mm}\) \\
\hline Colour: & RAL 7035 \\
\hline
\end{tabular}

\subsection*{6.5 EU DIRECTIVES CONFORMITY}

EU Directive on Measuring Instruments 2014/32/EU
EU Directive on EMC 2014/30/EU
EU Directive on Low Voltage 2014/35/EU
EU Directive WEEE 2002/96/EC

\subsection*{6.6 Dimensions}

\subsection*{6.6.1 Dimensional drawing}


\section*{7 ABBREVIATION/GLOSSARY}

Abbreviations are explained within the text where they appear the first time. Most common abbreviations and expressions are explained in the following table:
\begin{tabular}{l|l} 
Term & Explanation \\
\hline MODBUS / DNP3 & Industrial protocol for data transmission \\
\hline MiQen & Setting Software for ISKRA instruments \\
\hline PI & Pulse input module \\
\hline AC & Alternating quantity \\
\hline IR & Infrared (optical) communication \\
\hline Pt1000 & Temperature sensor \\
\hline RMS & Root Mean Square \\
\hline PO & Pulse output \\
\hline\(P A\) & Power angle (between current and voltage) \\
\hline PF & Power factor \\
\hline THD & Total harmonic distortion \\
\hline NC & Not connected \\
\hline
\end{tabular}

List of common abbreviations and expressions

\section*{8 APPENDICES}

\subsection*{8.1 APPENDIX A: MODBUS communication protocol}

Modbus protocol enables operation of device on Modbus networks. For WM1-6A\WM1M6A with serial communication the Modbus protocol enables multi drop communication via RS485 communication. Modbus protocol is a widely supported open interconnect originally designed by Modicon.

The memory reference for input and holding registers is 30000 and 40000 respectively.
Communication operates on a master-slave basis where only one device (the master) can initiate transactions called 'Requests'. The other devices (slaves) respond by supplying the requested data to the master. This is called the 'Request - Response Cycle'. The master could send the MODBUS request to the slaves in two modes:
- Unicast mode, where the master sends the request to an individual slave. It returns a replay to the master after the request is received and processed. A MODBUS transaction consists of two messages. Each slave should have an unique address.
- Broadcast mode, where the master sends a request to all slaves and an answer is never followed. All devices should accept the broadcast request function. The Modbus address 0 is reserved to identify the broadcast request.

\section*{Master to Slave Request}
\begin{tabular}{|c|c|c|c|}
\hline Device address & Function Code & nx8 bit data bytes & Error check \\
\hline
\end{tabular}

\section*{Slave to Master Response}
\begin{tabular}{|l|l|l|l|}
\hline Device address & Function Code & nx8 bit data bytes & Error check \\
\hline
\end{tabular}

\section*{Request}

This Master to Slave transaction takes the form:
- Device address: master addressing a slave (Address 0 is used for the broadcast address, which all slave devices recognize.)
- Function code e.g. 03 asks the slave to read its registers and respond with their contents.
- Data bytes: tells the slave which register to start at and how many registers to read.

\section*{Response}

This Slave to Master transaction takes the form:
- Device address: to let the master know which slave is responding.
- Function code: this is an echo of the request function code.
- Data bytes: contains the data collected from the slave.

\section*{Request Frame}
\begin{tabular}{|c|c|c|c|c|}
\hline & & Starting Register & Register Count & CRC \\
\hline Slave Address & Function Code & HI LO & HI LO & LO \\
\hline 21 & 04 & \(00 \quad 6 \mathrm{BI}\) \\
\hline
\end{tabular}

\section*{Response Frame}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & Register Data & CRC \\
\hline Slave Address & Function Code & Byte Count & HI LO HI LO & LO HI \\
\hline 21 & 04 & 04 & FE 00 59 96 & \\
\hline
\end{tabular}

\section*{Request- response cycle example}

Address number of slave: 21
Function code: \(04 \rightarrow 30000\)
Starting register HI...LO: \(00 \ldots 6 \mathrm{~B}_{(16)} \rightarrow \mathbf{1 0 7}_{(10)}+30000_{(10)}=\mathbf{3 0 1 0 7}_{(10)}\) (Meaning that actual measurement is U1. For further informations see REGISTER TABLE FOR THE ACTUAL MEASUREMENTS.)
Register count HI...LO: 00...02(16) \(\rightarrow 2_{(10)}\) (Two registers: 30107 and 30108)
Data type: T5 (Unsigned Measurement (32 bit) - see table of DATA types decoding)
Register data: FE \(0059 \mathbf{7 4}_{(16)} \rightarrow 22934 * 10^{-2} \mathrm{~V}=\mathbf{2 2 9 , 3 4} \mathrm{V}\)

\section*{REGISTER TABLE FOR THE ACTUAL MEASUREMENTS}

The tables below represent the complete set of MODBUS register map.

\section*{SETTINGS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow{2}{*}{Address}} & Contents & Data & Ind & Values / Dependencies \\
\hline & & \multicolumn{4}{|l|}{Input Registers} \\
\hline & & \multicolumn{4}{|l|}{READ ONLY INFO} \\
\hline 30000 & & Device group & T1 & 4 & WM \\
\hline 30001 & 30008 & Model Number & T_Str16 & & WM1-6A Energy \\
\hline 30009 & 30012 & Serial Number & T_Str8 & & WM\#\#\#\#\#\# \\
\hline 30013 & & Software Reference & T1 & & 100=1.00 \\
\hline 30014 & & Hardware Reference & T_Str2 & & A (B,C, D...) \\
\hline 30015 & & Calibration voltage & T4 & & 230 V \\
\hline 30017 & & Calibration current & T4 & & 65 A \\
\hline 30019 & & Accuracy class & T17 & & \(100=1.0\) \\
\hline 30020 & & MiNet Flag & T1 & 0 & \\
\hline \multirow[t]{3}{*}{30024} & & \multirow[t]{3}{*}{COM1: Communication Type} & \multirow[t]{3}{*}{T1} & 2 & RS485 \\
\hline & & & & 9 & Infra-red \\
\hline & & & & 13 & M-BUS \\
\hline \multirow[t]{3}{*}{30029} & & \multirow[t]{3}{*}{I/O 1} & \multirow[t]{3}{*}{T1} & 0 & No I/O \\
\hline & & & & 5 & Tariff Input \\
\hline & & & & 10 & Digital input \\
\hline \multirow[t]{3}{*}{30030} & & \multirow[t]{2}{*}{I/O 2} & \multirow[t]{2}{*}{T1} & 0 & No I/O \\
\hline & & & & 12 & Pulse Output (SO) \\
\hline & & & & 26 & Load control Output \\
\hline 30047 & 30048 & Calibration Time Stamp & T10 & & \\
\hline 30079 & & MID unlock counter & T1 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|c|c|}
\hline \multicolumn{2}{|c|}{ Address } & Contents & Data & Ind & Values / Dependencies \\
\cline { 2 - 5 } & Input Registers & & & \\
\hline 30080 & FW upgrade counter & T1 & & \\
\hline 30096 & CheckSum Parameters & T1 & & \\
\hline 30097 & CheckSum Firmware & T1 & 0 & IR \\
\hline 30098 & Active Communication Port & & 1 & COM1 \\
\hline & Modbus Max. Register Read at \\
\hline 30099 & & T1 & & \\
\hline 30101 & & Phase valid measurement & T1 & Bit 0 & Invalid measurement phase 1 \\
\hline & & & & Bit 1 & Invalid measurement phase 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Address}} & Contents & Data & Ind & Values / Dependencies \\
\hline & & \multicolumn{2}{|l|}{Input Registers} & & \\
\hline & & ACTUAL MEASUREMENTS & & & \\
\hline 30105 & 30106 & Frequency & T5 & & \\
\hline 30107 & 30108 & U1 & T5 & & \\
\hline 30126 & 30127 & I1 & T5 & & \\
\hline 30140 & 30141 & Active Power Total (Pt) & T6 & & \\
\hline 30148 & 30149 & Reactive Power Total (Qt) & T6 & & \\
\hline 30156 & 30157 & Apparent Power Total (St) & T5 & & \\
\hline 30164 & 30165 & Power Factor Total (PFt) & T7 & & \\
\hline 30172 & & \begin{tabular}{l}
Power Angle \\
Total(atan2(Pt,Qt))
\end{tabular} & T17 & & \\
\hline 30182 & & U1 THD\% & T16 & & \\
\hline 30188 & & I1 THD\% & T16 & & \\
\hline \multirow[t]{4}{*}{30197} & & \multirow[t]{4}{*}{External relay status} & \multirow[t]{4}{*}{T1} & 0 & Off \\
\hline & & & & 1 & On \\
\hline & & & & 250 & Comm. Error \\
\hline & & & & 255 & Not connected \\
\hline \multirow[t]{2}{*}{30198} & & \multirow[t]{2}{*}{Load control output status} & \multirow[t]{2}{*}{T1} & 0 & Off \\
\hline & & & & 1 & On \\
\hline \multirow[t]{2}{*}{30199} & & \multirow[t]{2}{*}{Digital input status} & \multirow[t]{2}{*}{T1} & 0 & Off \\
\hline & & & & 1 & On \\
\hline \multirow[t]{3}{*}{30200} & & \multirow[t]{3}{*}{Limit control output status} & \multirow[t]{3}{*}{T1} & 0 & Off \\
\hline & & & & 1 & On \\
\hline & & & & 255 & Disabled \\
\hline \multirow[t]{2}{*}{30201} & & \multirow[t]{2}{*}{Button status} & \multirow[t]{2}{*}{T1} & 0 & Not pressed \\
\hline & & & & 1 & pressed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow{2}{*}{Address}} & Contents & Data & Ind & Values / Dependencies \\
\hline & & Input Registers & & & \\
\hline & & ENERGY & & & \\
\hline \multirow[t]{4}{*}{30400} & & \multirow[t]{4}{*}{Error register} & \multirow[t]{4}{*}{T1} & 0 & No Error \\
\hline & & & & Bit 0 & Error Parameter CRC \\
\hline & & & & Bit 1 & Error Firmware CRC \\
\hline & & & & Bit 2 & MID version is not locked \\
\hline 30401 & & Energy Counter 1 Exponent (resettable) & T2 & & \\
\hline 30402 & & Energy Counter 2 Exponent (resettable) & T2 & & \\
\hline 30403 & & Energy Counter 3 Exponent (resettable) & T2 & & \\
\hline 30404 & & Energy Counter 4 Exponent (resettable) & T2 & & \\
\hline 30405 & & Current Active Tariff & T1 & & \\
\hline 30406 & 30407 & Energy Counter 1 (resettable) & T3 & & \\
\hline 30408 & 30409 & Energy Counter 2 (resettable) & T3 & & \\
\hline 30410 & 30411 & Energy Counter 3 (resettable) & T3 & & \\
\hline 30412 & 30413 & Energy Counter 4 (resettable) & T3 & & \\
\hline 30414 & & Energy Counter 1 Exponent (Non-reset) & T2 & & \\
\hline 30415 & & Energy Counter 2 Exponent (Non-reset) & T2 & & \\
\hline 30416 & & Energy Counter 3 Exponent (Non-reset) & T2 & & \\
\hline 30417 & & Energy Counter 4 Exponent (Non-reset) & T2 & & \\
\hline 30418 & 30419 & Energy Counter 1 (Non-reset) & T3 & & \\
\hline 30420 & 30421 & Energy Counter 2 (Non-reset) & T3 & & \\
\hline 30422 & 30423 & Energy Counter 3 (Non-reset) & T3 & & \\
\hline 30424 & 30425 & Energy Counter 4 (Non-reset) & T3 & & \\
\hline 30426 & 30427 & 1000 x Energy Counter 1 (res.) & T3 & & \\
\hline 30428 & 30429 & 1000 x Energy Counter 2 (res.) & T3 & & \\
\hline 30430 & 30431 & 1000 x Energy Counter 3 (res.) & T3 & & \\
\hline 30432 & 30433 & 1000 x Energy Counter 4 (res.) & T3 & & \\
\hline 30434 & 30435 & \(1000 \times\) Energy Counter 1 (Non -res.) & T3 & & \\
\hline 30436 & 30437 & 1000 x Energy Counter 1 (Non -res.) & T3 & & \\
\hline 30438 & 30439 & 1000 x Energy Counter 1 (Non -res.) & T3 & & \\
\hline 30440 & 30441 & 1000 x Energy Counter 1 (Non -res.) & T3 & & \\
\hline 34999 & 35000 & Run time & T3 & & seconds \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Address } & \multicolumn{1}{|c|}{ Contents } & \multicolumn{1}{|c|}{ Data } & Ind & Values & min & max \\
\hline & & RAM logger & & & & & \\
\hline 36000 & & Measurement parameter & T1 & & See OutTypes & \\
\hline 36001 & & Time interval & T1 & & minutes & \\
\hline 36002 & & Number of valid results & T1 & & & & \\
\hline 36003 & & \begin{tabular}{l} 
Time stamp of last \\
result
\end{tabular} & T2 & & \begin{tabular}{l} 
minutes since midnight \\
\((<0\) if no time \()\)
\end{tabular} & & \\
\hline 36004 & 36131 & \begin{tabular}{l} 
Logger table (newest to \\
oldest)
\end{tabular} & T17 & & Normalised values & & \\
\hline
\end{tabular}

\section*{ACTUAL MEASUREMENTS}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Address} & Contents & Data & Ind & Values & min & max & P. Level \\
\hline \multirow[t]{5}{*}{40013} & & \multirow[t]{5}{*}{Reset command register 1} & \multirow[t]{5}{*}{T1} & Bit-0 & Reset counter 1 & & & \multirow[t]{4}{*}{1} \\
\hline & & & & Bit-1 & Reset counter 2 & & & \\
\hline & & & & Bit-2 & Reset counter 3 & & & \\
\hline & & & & Bit-3 & Reset counter 4 & & & \\
\hline & & & & Bit-4 & Reset alarm output relay 2 & & & \\
\hline \multirow[t]{2}{*}{40015} & & \multirow[t]{2}{*}{IR external relay
command action} & \multirow[t]{2}{*}{T1} & 0 & Off & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{0} \\
\hline & & & & 1 & On & & & \\
\hline \multirow[t]{2}{*}{40016} & & \multirow[t]{2}{*}{Load control Output
state} & \multirow[t]{2}{*}{} & 0 & Off & 0 & 1 & 0 \\
\hline & & & & 1 & On & & & \\
\hline \multirow[t]{6}{*}{40017} & & \multirow[t]{6}{*}{Digital input function} & \multirow[t]{6}{*}{} & 0 & & & & \\
\hline & & & & 1 & Tariff input & & & \\
\hline & & & & 2 & IR relay push button & & & \\
\hline & & & & 3 & IR relay switch & & & \\
\hline & & & & 4 & External relay push button & & & \\
\hline & & & & 5 & External relay switch & & & \\
\hline 40101 & 40120 & Description & T_Str16 & & & & & 2 \\
\hline 40121 & 40140 & Location & T_Str16 & & & & & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Address} & Contents & Data & Ind & Values & min & max & \begin{tabular}{l}
P. \\
Level
\end{tabular} \\
\hline & & LIMIT & & & & & & \\
\hline 40189 & & Limit 1: Parameter & T1 & & See OutTypes & & & \\
\hline 40190 & & Limit 1: Compare relation & T1 & 0 & measurement > limit & 0 & 1 & 2 \\
\hline & & & & 1 & measurement < limit & & & \\
\hline 40191 & & Limit 1: ON level & T17 & & \% of parameter value & -300 & 300 & 2 \\
\hline 40192 & & Limit 1: OFF level & T17 & & \% of parameter value & -300 & 300 & 2 \\
\hline 40193 & & Limit 1: Compare time delay & T1 & & seconds & 0 & 600 & 2 \\
\hline 40194 & 40198 & Limit 2 & & & see Limit 1 & & & \\
\hline
\end{tabular}

APPENDICES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & COMMUNICATION & & & & & & \\
\hline 40202 & & Port 1: Device Address (Modbus) & T1 & & & 1 & 247 & 2 \\
\hline 40203 & & Port 1: Baud Rate & T1 & 0 & Baud rate 1200 & 1 & 7 & 2 \\
\hline & & & & 1 & Baud rate 2400 & & & \\
\hline & & & & 2 & Baud rate 4800 & & & \\
\hline & & & & 3 & Baud rate 9600 & & & \\
\hline & & & & 4 & Baud rate 19200 & & & \\
\hline 40204 & & Port 1: Stop Bit & T1 & 0 & 1 Stop bit & 0 & 1 & 2 \\
\hline & & & & 1 & 2 Stop bits & & & \\
\hline 40205 & & Port 1: Parity & T1 & 0 & No parity & 0 & 2 & 2 \\
\hline & & & & 1 & Odd parity & & & \\
\hline & & & & 2 & Even parity & & & \\
\hline 40206 & & Port 1: Data Bits & T1 & 0 & 8 bits & 0 & 0 & 2 \\
\hline & & WIFI adapter & & & & & & \\
\hline 42750 & & WIFI LCD menu time
enabled & T1 & & Seconds & & & \\
\hline 42751 & & WIFI status & T1 & & WIFI status & & & \\
\hline 42752 & 42753 & WIFI IP & T3 & & \[
\begin{aligned}
& \text { example: } \\
& 129.168 .001 .255
\end{aligned}
\] & & & \\
\hline 42754 & & WIFI command & T1 & & reset WIFI & & & \\
\hline 42755 & 42760 & Reserved for WIFI numbers & T1 & & & & & \\
\hline 42761 & 42770 & WIFI status text 1 & T_Str20 & & & & & \\
\hline 42771 & 42780 & WIFI status text 2 & T_Str20 & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & Counter freeze & & & & & & \\
\hline 41901 & & Auto freeze interval [minutes] & T1 & & & & & \\
\hline 41902 & & time to freeze [s] & T1 & & & & & \\
\hline 41903 & 41904 & time from freeze [s] & T3u & & & & & \\
\hline 41905 & & Freeze status & T1 & & & & & \\
\hline 41906 & & Current Active Tariff & T1 & & & & & \\
\hline 41907 & 41908 & Energy Counter 1 (resetable) & T3 & & & & & \\
\hline 41909 & 41910 & Energy Counter 2 (resetable) & T3 & & & & & \\
\hline 41911 & 41912 & Energy Counter 3 (resetable) & T3 & & & & & \\
\hline 41913 & 41914 & Energy Counter 4 (resetable) & T3 & & & & & \\
\hline 41915 & 41916 & Energy Counter 1 (Non-reset) & T3 & & & & & \\
\hline 41917 & 41918 & Energy Counter 2 (Non-reset) & T3 & & & & & \\
\hline 41919 & 41920 & Energy Counter 3 (Non-reset) & T3 & & & & & \\
\hline 41921 & 41922 & Energy Counter 4 (Non-reset) & T3 & & & & & \\
\hline 41923 & 41924 & 1000x Energy Counter 1 (resetable) & T3 & & & & & \\
\hline 41925 & 41926 & 1000x Energy Counter 2 (resetable) & T3 & & & & & \\
\hline 41927 & 41928 & 1000x Energy Counter 3 (resetable) & T3 & & & & & \\
\hline 41929 & 41930 & 1000x Energy Counter 4 (resetable) & T3 & & & & & \\
\hline 41931 & 41932 & 1000x Energy Counter 1 (Non-reset) & T3 & & & & & \\
\hline 41933 & 41934 & 1000x Energy Counter 2 (Non-reset) & T3 & & & & & \\
\hline 41935 & 41936 & 1000x Energy Counter 3 (Non-reset) & T3 & & & & & \\
\hline 41937 & 41938 & 1000x Energy Counter 4 (Non-reset) & T3 & & & & & \\
\hline
\end{tabular}

\section*{SUPPORTED FUNCTIONS AND USAGE}
\begin{tabular}{|c|c|l|l|}
\hline \begin{tabular}{l} 
Code \\
DEC
\end{tabular} & \begin{tabular}{l} 
Code \\
HEX
\end{tabular} & Function & References \\
\hline 3 & 03 & to read from holding registers & \((4 X X X X\) memory references) \\
\hline 4 & 04 & to read from input registers & \((3 X X X X\) memory references) \\
\hline 6 & 06 & to write to a single holding register & \((4 X X X X\) memory references) \\
\hline 16 & 10 & to write to one or more holding register & \((4 X X X X\) memory references) \\
\hline
\end{tabular}

\section*{DATATYPES DECODING}

Registers defined in the Modbus database will define data as one of the data types described in the following table:
\begin{tabular}{|l|l|l|}
\hline Type & Value / Bit Mask & Description \\
\hline T1 & & \begin{tabular}{l} 
Unsigned Value (16 bit) \\
Example: 12345 stored as \(12345=3039_{(16)}\)
\end{tabular} \\
\hline T2 & & \begin{tabular}{l} 
Signed Value (16 bit) \\
Example: -12345 stored as -12345 = CFC7(16)
\end{tabular} \\
\hline T3 & \begin{tabular}{l} 
Signed Long Value (32 bit) \\
Example: 123456789 stored as 123456789 = 075B CD 15(16)
\end{tabular} \\
\hline T4 & \begin{tabular}{l} 
bits \# 15..14 \\
bits 13..00 \\
Decade Exponent(Unsigned 2 bit) \\
Binary Unsigned Value (14 bit) \\
Example: 10000*102 stored as A710
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Type & Value / Bit Mask & Description \\
\hline T5 & \[
\begin{aligned}
& \text { bits \# 31.. } 24 \\
& \text { bits \# 23..00 }
\end{aligned}
\] & \begin{tabular}{l}
Unsigned Measurement (32 bit) \\
Decade Exponent(Signed 8 bit) \\
Binary Unsigned Value (24 bit) \\
Example: 123456*10-3 stored as FD01 E240 (16)
\end{tabular} \\
\hline T6 & \begin{tabular}{l}
bits \# 31.. 24 \\
bits \# 23..00
\end{tabular} & ```
Signed Measurement (32 bit)
Decade Exponent (Signed 8 bit)
Binary Signed value (24 bit)
Example: - 123456*10-3 stored as FDFE 1DC0(16)
``` \\
\hline T7 & \begin{tabular}{l}
bits \# 31.. 24 \\
bits \# 23..16 \\
bits \# 15..00
\end{tabular} & \begin{tabular}{l}
Power Factor (32 bit) \\
Sign: Import/Export (00/FF) \\
Sign: Inductive/Capacitive (00/FF) \\
Unsigned Value (16 bit), 4 decimal places \\
Example: 0.9876 CAP stored as 00FF 2694(16)
\end{tabular} \\
\hline T8 & \begin{tabular}{l}
bits \# 31.. 24 \\
bits \# 23..16 \\
bits \# 15..08 \\
bits \# 07..00
\end{tabular} & ```
Time stamp (32 bit)
Minutes 00 - 59 (BCD)
Hours 00 - 23 (BCD)
Day of month 01 - 31 (BCD)
Month of year 01 - 12 (BCD)
Example: 15:42, 1. SEP stored as 4215 0109(16)
``` \\
\hline T9 & \begin{tabular}{l}
bits \# 31.. 24 \\
bits \# 23..16 \\
bits \# 15..08 \\
bits \# 07..00
\end{tabular} & ```
Time (32 bit)
1/100s 00 - 99 (BCD)
Seconds 00 - 59 (BCD)
Minutes 00 - 59 (BCD)
Hours 00 - 24 (BCD)
Example: 15:42:03.75 stored as 7503 4215(16)
``` \\
\hline T10 & \begin{tabular}{l}
bits \# 31.. 24 \\
bits \# 23..16 \\
bits \# 15..00
\end{tabular} & ```
Date (32 bit)
Day of month 01 - 31 (BCD)
Month of year 01 - 12 (BCD)
Year (unsigned integer) 1998..4095
Example: 10, SEP 2000 stored as 1009 07D0(16)
``` \\
\hline \begin{tabular}{l}
T_Str4 \\
(T11)
\end{tabular} & & \begin{tabular}{l}
Text String 4 characters \\
Two characters per 16 bit register
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { T_Str6 } \\
& \text { (T12) }
\end{aligned}
\] & & Text String 6 characters Two charcters per 16 bit register \\
\hline T_Str8 & & \begin{tabular}{l}
Text String 8 characters \\
Two characters per 16 bit register.
\end{tabular} \\
\hline T_Str16 & & \begin{tabular}{l}
Text String 16 characters \\
Two characters per 16 bit register.
\end{tabular} \\
\hline T_Str20 & & \begin{tabular}{l}
Text String 20 characters \\
Two characters per 16 bit register.
\end{tabular} \\
\hline T16 & & Unsigned Value (16 bit), 2 decimal places Example: 123.45 stored as \(123.45=3039_{(16)}\) \\
\hline T17 & & Signed Value (16 bit), 2 decimal places Example: -123.45 stored as \(-123.45=\) CFC7 \(_{(16)}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Type & Value / Bit Mask & Description \\
\hline T_Time & \begin{tabular}{l}
bits \# 63.. 56 \\
bits \# 55..48 \\
bits \# 47.. 40 \\
bits \# 39.. 32 \\
bits \# 31.. 24 \\
bits \# 23..16 \\
bits \# 15..00
\end{tabular} & ```
Time and Date (64 bit)
1/100s 00 - 99 (BCD)
Seconds 00 - 59 (BCD)
Minutes 00 - 59 (BCD)
Hours 00 - 24 (BCD)
Day of month 01 - 31 (BCD)
Month of year 01 - 12 (BCD)
Year (unsigned integer) 1998..4095
Example: 15:42:03.75, 10. SEP 2000 stored as 7503 4215 1009 07D0(16)
``` \\
\hline T_TimeIEC & \begin{tabular}{l}
bits \# 63.. 55 \\
bits \# 54..48 \\
bits \# 47..44 \\
bits \# 43..40 \\
bits \# 39.. 37 \\
bits \# 36..32 \\
bit \# 31 \\
bits \# 30.. 29 \\
bits \# 28.. 24 \\
bit \# 23 \\
bit \# 22 \\
bits \# 21.. 16 \\
bits \# 15..00
\end{tabular} & ```
Time and Date (64 bit) = IEC870-5-4 "Binary Time 2a"
Reserved
Years (0 .. 99)
Reserved
Months (1 .. 12)
Day of Week (1 .. 7)
Day of Month (1 .. 31)
Summer Time (0 .. 1): Summer time (1), Standard time (0)
Reserved
Hours (0 .. 23)
Invalid (0 .. 1): Invalid (1), Valid (0)
Reserved
Minutes (0 .. 59)
Miliseconds (0 .. 59999)
Example: 15:42, 1. SEP stored as 4215 0109(16)
``` \\
\hline T_Data & & \begin{tabular}{l}
Record Data \\
Size and SubTypes depends on the Actual Memory Part
\end{tabular} \\
\hline T_Str40 & & \begin{tabular}{l}
Text String 40 characters \\
Two characters per 16 bit register.
\end{tabular} \\
\hline T_float & \begin{tabular}{l}
bits \# 31 \\
bits \# 30.. 23 \\
bits \# 22.. 0
\end{tabular} & ```
IEEE 754 Floating-Point Single Precision Value (32 bit)
Sign Bit (1 bit)
Exponent Field (8 bit)
Significand (23 bit)
Example: 123.45 stored as 123.45000 = 42F6 E666(16)
``` \\
\hline T9A & \begin{tabular}{l}
bits \# 15.. 08 \\
bits \# 07..00
\end{tabular} & ```
Time (16 bit)
Minutes 00 - 59 (BCD)
Hours 00 - 24 (BCD)
Example: 15:42 stored as 4215(16)
``` \\
\hline T10A & \begin{tabular}{l}
bits \# 15.. 08 \\
bits \# 07..00
\end{tabular} & ```
Date (16 bit)
Day of month 00 - 31 (BCD)
Month of year 00 - 12 (BCD)
Example: 30, SEP stored as 3009(16)
``` \\
\hline T18 & & \begin{tabular}{l}
Signed Value (16 bit), 4 decimal places \\
Example: -0.2345 stored as \(-2345=\) F6D7 \(_{(16)}\)
\end{tabular} \\
\hline T_DSK & & HEX value 16 bytes \\
\hline
\end{tabular}

\subsection*{8.2 APPENDIX B: M-BUS}

The M-BUS interface fully complies with M-BUS European standard EN13757-2. The entire communication is ensured with 8 Data Bits, Even Parity, 1 Stop Bit and a Baud Rate from 300 to 9600 Bauds.

\section*{Communication settings}

Default communication settings are: 2400, \(8, E, 1\) primary address 0 and secondary address is set to serial number of device.

\section*{Initialize M-Bus (SNK_NKE)}

This Short Telegram initializes the M-BUS WM1-6A. The M-BUS WM1-6A confirms correct receipt by Single Character Acknowledgement (\(A C K=E 5\)). If the telegram was not correctly received the WM1-6A will not send an acknowledgement.

\section*{Select M-BUS WM3-6 Using Secondary Address (SND_UD)}

This Telegram enables to select M-BUS WM3-6. The M-BUS WM3-6 confirms the correct receipt by ACK. If the telegram has not been correctly received the M-BUS WM1-6A will not send an Acknowledgement. After issue of the Single Character Acknowledgement the M-BUS WM1-6A is ready to transmit the entire Read-out Data within 3 seconds from receiving the Telegram „Transmit Read-out Data". At the end of 3 seconds the M-BUS WM1-6A will switch back to normal mode.

\section*{Transmit Read-out Data via Primary/Secondary Address (REQ_UD2)}

This Short Telegram enables to select the M-BUS WM1-6A and to command it to transmit the Read-out Data parameterized. The M-BUS WM1-6A confirms correct receipt by transmitting of the Read-out Data. If the Short Telegram has not been received correctly; no Data will be transmitted by the M-BUS WM1-6A. The Read-out Data are sent within \(35 \mathrm{~ms}-75 \mathrm{~ms}\) from receipt of the Short Telegram by the M-BUS Meter (fom more infomations see section M-Bus telegrams).

\section*{Set Baud Rate via Primary/Secondary Address (SND_UD)}

This telegram enables to set the desired Baud Rate. The M-BUS WM1-6A confirms the correct receipt by ACK. If the telegram was not received correctly the M-BUS WM1-6A does not send an Acknowledgement. The (ACK) is sent by the M-BUS WM1-6A in the Old Baud Rate. As soon as ACK is transmitted the M-BUS Meter switches to the baud rate newly parameterized. If the WM1-6A now does not receive a new Telegram under the new baud rate within a period of 30 seconds -40 seconds, it automatically switches back to the old baud rate. This is apt to prevent that a faulty setting of the baud rate may interrupt communication.

\section*{Set Primary Address via Primary/Secondary Address (SND_UD)}

This Telegram enables to set a new Primary Address. The M-BUS WM1-6A confirms the correct receipt by ACK. If the telegram has not been correctly received the M-BUS WM1-6A will not send an Acknowledgement.

\section*{Set Secondary Address via Primary/Secondary Address (SND_UD)}

This Telegram enables to set a new Secondary Address. The M-BUS WM1-6A confirms the correct receipt by ACK. If the telegram has not been correctly received the M-BUS WM1-6A will not send an Acknowledgement.
Secondary Address (UD) consists of:
Identification Number: 00000000-99999999 8-digit Secondary Address number

Manufacturer's Code: 73262 Byte Company Constant (Iskra = "73 26")
Version Number: 01 - FF 1 Byte
Medium: 021 Byte Constant Electricit

\section*{Reset, Restart M-BUS MC350 via Primary/Secondary Address (SND_UD)}

This Telegram reset/restarts M-BUS MC350. The M-BUS WM1-6A confirms correct receipt by ACK. If the telegram was not correctly received the M-BUS WM1-6A will not send an acknowledgement.

\section*{M-Bus Telegram}

\section*{Total Energy counters 0, 1, 2, 3}

Energy counters could represent: +/- active energy, +/-reactive energy or apparent energy and one of 4-th tariff.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & DIF & DIFE & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & & & & & & & & xx.xx.xx.xx \\
\hline TO: & 04 & none & none & & & & & \\
\hline T1: & 84 & 10 & none & & & & & \\
\hline T2: & 84 & 20 & none & & & & & \\
\hline A+: & & & & 05 & None & none & none & * \(10{ }^{5-3} \mathrm{~Wh}\) \\
\hline A-: & & & & 85 & 3C & none & none & * \(10{ }^{5-3} \mathrm{~Wh}\) \\
\hline \(\mathrm{R}+\) : & & & & FB & 82 & 75 & none & *10 \({ }^{5-3}\) varh \\
\hline R-: & & & & FB & 82 & F5 & 3C & *10 \({ }^{5-3}\) varh \\
\hline App: & & & & FB & 84 & 75 & none & *10 \({ }^{5-3} \mathrm{VAh}\) \\
\hline
\end{tabular}

\section*{Active Tariff number}

Tariff number in progress (1 to 4)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & DIF & DIFE & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & 01 & & & FF & 01 & & & \(x x\) \\
\hline
\end{tabular}

DATA: value represent as 8-bit integer

\section*{Active Power Total Pt (W)}

Active power total in 32 bit \(\times 10^{(2-3)} \mathrm{W}\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline & DIF & DIFE & DIFE & VIF & VIFE \\
\hline & DATA \\
\hline & 04 & & & 2A & \\
\hline
\end{tabular}

\section*{Rective Power Total (kvar)}

Reactive power total in 32bit \(\times 10^{(2-3)}\) var
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline & DIF & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & 04 & & FB & 97 & 72 & & xx.xx.xx.xx \\
\hline
\end{tabular}

Instant Apparent Power Total (VA)
Apparent power total in 32 bit \(\times 10^{(5-6)} \mathrm{VA}\)
\begin{tabular}{|l|c|c|c|c|c|c|l|}
\hline & DIF & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & 04 & & FB & B4 & 75 & & xx.xx.xx.xx \\
\hline
\end{tabular}
n-0... 7

\section*{Power Factor: -: leading et +: lagging: PF}

Power factor as 32-bit integer * \(10^{-3}\)
\begin{tabular}{|l|c|c|c|c|c|c|c|l|}
\hline & DIF & DIFE & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & 04 & & & A8 & B4 & 35 & & xx.xx.xx.xx \\
\hline
\end{tabular}

Unit : W/V/A

\section*{Current Total (A)}

Total current as 32 bit \(\times 10^{(9-12)} \mathrm{A}\)
\begin{tabular}{|l|c|c|c|c|c|l|}
\hline & DIF & DIFE & VIF & VIFE & VIFE & DATA \\
\hline & 04 & & FD & 59 & & xx.xx.xx.xx \\
\hline
\end{tabular}

\section*{System frequency (Hz/1000)}

Contains the line frequency 32-bit integer in mHz .
\begin{tabular}{|l|c|c|c|c|c|c|c|l|}
\hline & DIF & DIFE & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & 04 & & & FB & \(2 C\) & & & xx.xx.xx.xx \\
\hline
\end{tabular}

Voltages (V)
Voltage as 32 bit \(\times 10^{(7-9)} \mathrm{V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & DIF & DIFE & VIF & VIFE & VIFE & VIFE & DATA \\
\hline & 04 & & & & & & xx.xx.xx.xx \\
\hline \multicolumn{3}{|l|}{U1:} & FD & C7 & FC & 01 & \\
\hline
\end{tabular}

\subsection*{8.3 APPENDIX C: Equations}

Definitions of symbols
Symbol Definition
\begin{tabular}{c|l}
\hline f & Phase, f is allways equal 1. \\
\hline \(\mathrm{U}_{\mathrm{f}}\) & Phase voltage \(\left(\mathrm{U}_{1}\right)\) \\
\hline N & Total number of samples in a period \\
\hline n & Sample number \((0 \leq \mathrm{n} \leq \mathrm{N})\) \\
\hline \(\mathrm{i}_{\mathrm{n}}\) & Current sample n \\
\hline\(\varphi_{\mathrm{f}}\) & Power angle between current and phase voltage \(\mathrm{f}\left(\varphi_{1}\right)\) \\
\hline
\end{tabular}

\section*{Voltage}
\(U_{f}=\sqrt{\frac{\sum_{n=1}^{N} u_{n}^{2}}{N}} \quad \mathrm{~N}\) - samples in averaging interval (up to 65 Hz)

\section*{Current}
\[
\mathrm{I}_{\mathrm{RMS}}=\sqrt{\frac{\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{i}_{\mathrm{n}}^{2}}{\mathrm{~N}}}
\]

N - samples in averaging interval (up to 65 Hz)

\section*{Power}
\[
P_{f}=\frac{1}{N} \cdot \sum_{\mathrm{n}=1}^{\mathrm{N}}\left(\mathrm{u}_{\mathrm{ff}} \cdot \mathrm{i}_{\mathrm{fn}}\right)
\]

\section*{Active power}

N - a number of periods
n - index of sample in a period
\(f\) - phase designation (\(f=1\))

\section*{\(\operatorname{SignQ}_{f}(\varphi)\)}
\(\varphi \in\left[0^{\circ}-180^{\circ}\right] \Rightarrow \operatorname{SignQ}_{\mathrm{f}}(\varphi)=+1\)
\(\varphi \in\left[180^{\circ}-360^{\circ}\right] \Rightarrow \operatorname{SignQ}_{\mathrm{f}}(\varphi)=-1\)

\section*{Reactive power sign}
\(\mathrm{Q}_{\mathrm{f}}\) - reactive power
\(\varphi\) - power angle
\begin{tabular}{ll}
\(\mathrm{S}_{\mathrm{f}}=\mathrm{U}_{\mathrm{f}} \cdot \mathbf{I}_{\mathrm{f}}\) & \begin{tabular}{l}
Apparent power \\
\(\mathrm{U}_{\mathrm{f}}-\) phase voltage \\
\(\mathrm{I}_{\mathrm{f}}-\) phase current
\end{tabular} \\
\hline \(\mathrm{Q}_{\mathrm{f}}=\operatorname{SignQ}_{\mathrm{f}}(\varphi) \cdot \sqrt{\mathrm{S}_{\mathrm{f}}^{2}-\mathrm{P}_{\mathrm{f}}^{2}}\) & \begin{tabular}{l}
Reactive power \\
\(\mathrm{S}_{\mathrm{f}}-\) apparent power \\
\(\mathrm{P}_{\mathrm{f}}-\) active power
\end{tabular} \\
\hline\(Q_{f}=\frac{1}{N} \cdot \sum_{n=1}^{N}\left(u_{f_{n}} \times i_{f[n+N / 4]}\right)\) & \begin{tabular}{l}
Reactive power by phases (displacement method) \\
N - a number of samples in a period \\
\(\mathrm{n}-\) sample number \((0 \leq \mathrm{n} \leq \mathrm{N})\) \\
\(\mathrm{f}-\) phase designation
\end{tabular} \\
\hline\(\varphi_{s}=\arctan 2\left(P_{t}, Q_{t}\right)\) & \begin{tabular}{l}
Total power angle \\
\(\mathrm{P}_{\mathrm{t}}-\) total active power \\
\(\mathrm{Q}_{\mathrm{t}}-\) total reactive power
\end{tabular} \\
\(\varphi_{s}=\left[-180^{\circ}, 179,99^{\circ}\right]\) & \begin{tabular}{l}
Distortion power factor \\
\(\mathrm{P}-\) active power \\
S -apparent power
\end{tabular} \\
\hline\(P F=\frac{|P|}{S}\) &
\end{tabular}

\section*{THD}
\(I_{f} T H D(\%)=\frac{\sqrt{\sum_{n=2}^{63} I_{n}{ }^{2}}}{I_{1}} \cdot 100 \quad\)\begin{tabular}{l}
Current THD \\
\(I_{1}\) - value of first harmonic \\
\(\mathrm{n}-\) number of harmonic
\end{tabular}

\section*{Phase voltage THD}
\(\mathrm{U}_{1}\) - value of first harmonic
n - number of harmonic

Iskra, d.o.o.

\section*{BU Ljubljana}

Stegne 21
SI-1000, Ljubljana
Phone: + 38615131000

\section*{Iskra IP, d.o.o.}

Vajdova ulica 71
SI-8333, Semič
Phone: +386 73849454

\section*{Iskra Sistemi - M dooel}

UI, Dame Gruev br. 16/5 kat
1000, Skopje
Phone: +389 75444498

\section*{Iskra, d.o.o.}

\section*{BU Capacitors}

Vajdova ulica 71
SI-8333, Semič
Phone: +386 73849200

\section*{Iskra STIK, d.o.o.}

Ljubljanska cesta 24a
SI-4000, Kranj
Phone: +386 42372233

\section*{Iskra Commerce, d.o.o.}

Hadži Nikole Živkoviča br. 2
11000 , Beograd
Phone: +381 113281041

\section*{Iskra, d.o.o. \\ BU MIS}

Ljubljanska c. 24a
SI-4000, Kranj
Phone: +386 42372112

\section*{Iskra Lotrič, d.o.o}

Ljubljanska c. 24a
SI-4000, Kranj
Phone: +38642372112

\section*{Iskra Hong Kong Ltd.}

33 Canton Road, T.S.T.
1705, China HK City
Phone: +852 27300917

\section*{Iskra, d.o.o.}

BU Batteries \& Potentiometers
Šentvid pri Stični 108
Sl-1296 , Šentvid pri Stični
Phone: +386 17800800

\section*{Iskra ODM, d.o.o.}

Ljubljanska c. 24a
SI-4000 , Kranj
Phone: +386 42372112

\section*{ISKRA ELECTRONICS GmbH}

Südliche Münchner Str. 55
82031 Grünwald
Deutschland

Iskra, d.o.o. BU Electroplating
Glinek 5
SI-1291, Škofljica
Phone: +386 13668050

Iskra Tela L, d.o.o.
Omladinska 66
78250, Laktaši
Phone: +38751535890

Iskra, d.o.o.
Stegne 21
SI-1000 Ljubljana, Slovenia

Phone: +386(0) 15131000
www.iskra.eu```

