ENERGY SECTOR

POWER QUALITY ANALYZER iMC770

- CLASS A MEASURING ACCURACY ACCORDING TO EN 61000-4-30.
- EVALUATION OF POWER QUALITY IN COMPLIANCE WITH EN 50160.
- VOLTAGE AND CURRENT AUTO RANGE MEASUREMENTS UP TO 1000 V_{TRMS}, 12.5 A.
- WIDE FREQUENCY MEASUREMENT RANGE 16 HZ 400 HZ.
- UP TO THREE INDEPENDENT COMMUNICATION PORTS.
- SUPPORT FOR NTP REAL TIME SYNCHRONISATION.
- UP TO 4 INPUTS/OUTPUTS.

FEATURES

- Evaluation of the electricity supply quality in compliance with EN 50160 with automatic report generation.
- Measurements of instantaneous values of more than 140 quantities including harmonics, flicker, power line signalling voltage, unbalance, etc. .
- Class A (0.1%) accuracy in compliance with EN 61000-4-30.
- Four quadrant energy measurement with class 0.5 S or 0.2 S for active energy (8 programmable energy counters, up to four tariffs, tariff clock, etc.).
- $\circ~$ Automatic range selection of 3 current and 4 voltage channels (max. 12.5 A and 1000 V_{TRMS}) with 32 kHz sampling rate.
- Recording all measured parameters including all voltage and current harmonics up to 63rd, 32 adjustable alarms, anomalies and quality reports in the internal memory.
- Measurements of 40 minimal and maximal values in different time intervals (from 1 period to 256 periods).
- Frequency range from 16 Hz to 400 Hz.
- Up to three independent communication ports (RS232 or RS485 up to 115,200 bit/s, Ethernet and USB 2.0).
- MODBUS and DNP3 communication protocols.
- Support for NTP real time synchronisation.
- Up to 4 inputs and outputs (analogue inputs/outputs, digital inputs/outputs, alarm/watchdog outputs, pulse input/outputs, tariff inputs).
- Multilingual support.
- Universal power supply.
- o 96 mm square panel mounting.
- User-friendly setting and evaluation software, MiQen.
- $\circ \quad \mbox{Extension unit with four configurable analogue outputs} \\ \mbox{EX104 (0.4 mA_{DC} ... 20 mA_{DC}, 0 V_{DC} ... 10 V_{DC})}. \label{eq:variable}$

DESCRIPTION

The *iMC770 Power Quality Analyzer* is an important device for permanent monitoring of power quality from its production (especially renewable), transmission, distribution to final consumers, who are most affected by insufficient quality of voltage. Lack of information about supplied quality of voltage can lead to unexplained production problems and malfunction or even damage to equipment used in production process. Therefore, *iMC770* can be used for utility purposes (evaluation against standards) as well as for industry purposes (monitoring supplied power quality).

The iMC770 Power Quality Analyzer performs measurements in compliance with regulatory requested standard EN 61000-4-30 and evaluates recorded parameters

for analysis according to parameters defined in European supply quality standard EN 50160:2011.

Moreover, the *iMC770* stores measurements and quality reports in internal memory for further analysis over recorded measurements. By accessing recorded or real time values from multiple instruments installed on different locations it is possible to gain the overall picture of systems' behaviour. This can be achieved regarding the *iMC770* accurate internal real time clock and NTP synchronisation support, which assure accurate, time-stamped measurements from dislocated units.

All required measurements, weekly PQ reports and alarms can also be stored locally in an internal memory. Stored data can be then transferred to a memory card or accessed through communication for post analysis.

APPLICATION AND BENEFITS

The iMC770 Power Quality Analyzer can be used as a standalone PQ monitoring device for detection of local PQ deviations. For this purpose, it is normally positioned at the point-of-common-coupling (PCC) of small and medium industrial and commercial energy consumers to monitor quality of delivered electric energy or at medium or low voltage feeders to monitor, detect and record possible disturbances caused by (unauthorized) operation of consumers.

Identifying relevant fixed measuring points is the most important task prior to complete system installation. This system itself will not prevent disturbances in network but it will help diagnose their origin and effects. This is possible only with system approach by using time synchronized meters with wide range of measuring parameters.

COMPLIANCE WITH STANDARDS

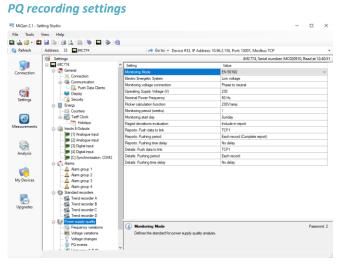
Measurements and reports of power (voltage) quality (PQ) indexes are only useful when can be compared with measurements and reports from other PQ measuring devices in the supply network and evaluated against agreed limits for assessment of measured PQ indexes to establish an overall view about PQ issues in the network.

For this purpose, it is essential to follow guidelines described in series of international and local standards. Beside requirements for safe operation (LVD directive) and immunity against more and more demanding disturbances (EMC directive), PQ measuring depends on two levels of standardization. Procedures for proper acquirement of PQ indexes, their timed aggregation and required accuracy are described in a standard IEC EN 61000-4-30 and two supplementary standards IEC EN 61000-4-7 (harmonics), IEC EN 61000-4-15 (flicker meter).

Procedures for evaluation of measured PQ indexes according to limit levels described in European standard EN 50160.

The *iMC770* **Power Quality Analyzer** follows required procedures and meets the precision requirements for class A measuring device as described in standard IEC EN 61000-4-30. It uses acquired measurements to perform automatic evaluation of PQ according to EN 50160 and issues weekly reports. In case if certain PQ indexes fail to meet required quality it also shows details of problematic measurements and time of occurrence of discrepancy.

Standard EN	Description
61010-1: 2010	Safety requirements for electrical equipment for measurement, control and laboratory use.
61557-12:2018	Electrical safety in LV distribution systems up to 1 kV a.c. and 1.5 kV d.c. – Combined performance measuring and monitoring devices for electrical parameters.
61000-4-30:2009	Electromagnetic compatibility (EMC) – Power quality measurements methods.
61000-4-7:2002 + A1:2009	Electromagnetic compatibility (EMC) – General guide on harmonics and inter- harmonics measurements.
61000-4-15:2010	Electromagnetic compatibility (EMC) – Flicker meter.
50160:2011	Voltage characteristics of electricity supplied by public distribution networks.
62053-22:2003	<i>Electricity metering equipment - Static meters for active energy (classes 0.2 S and 0.5 S).</i>
62053-24:2014	<i>Electricity metering equipment – Static meters for reactive energy at fundamental frequency (classes 0,5 S, 1 S and 1).</i>
62053-23:2003	<i>Electricity metering equipment -Static meters for reactive energy (classes 2 and 3).</i>
61326-1:2006	EMC requirements for electrical equipment for measurement, control and laboratory use.
60529:1997/A1:2000	Degrees of protection provided by enclosures (IP code).
60068-2-1/-2/-6/-27/-30	Environmental testing (-1 Cold, -2 Dry heat, -30 Damp heat, -6 Vibration, -27 Shock).
UL 94	Tests for flammability of plastic materials for parts in devices and appliances.


Table 1: List of applicable standards

VOLTAGE QUALITY

Voltage Quality is well-defined term (sometimes also termed Power Quality – PQ) and is covered with a selection of parameters, each of which represents certain phenomenon. They represent only most common types of phenomena, which can describe operation of electrical network with closest approximation.

The iMC770 Power Quality Analyzer measures, detects, stores and evaluates parameters, which are defined in several standards. Evaluation is by default performed according to limits set in European standard EN 50150. Beside that users can always alter parameters according to their requirements or according to immunity of their equipment which operates within analyzed power network.

Figure 1: The sample of settings for power quality parameters are set with setting and monitoring software MiQen

Characteristic parameters that describe power quality are shown in table 1.

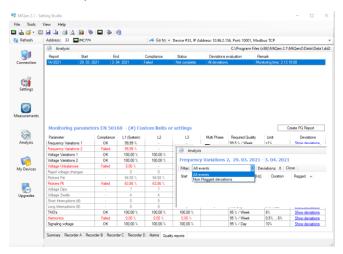

Phenomena	PQ Parameters
Frequency variations	Frequency distortion
Voltage variations	Voltage fluctuation
	Voltage unbalance
Voltage changes	Rapid voltage changes
	Flicker
Voltage events	Voltage dips
	Voltage interruptions
	Voltage swells
Harmonics & THD	Harmonics
	Interharmonics
	Signalling voltage

Table 2: Voltage quality parameters as defined in EN 50160

PQ reports

PQ report is issued on a basis of chosen PQ parameters as well as information about a period of tracking and place of tracking (type of network).

Each record is internally stored for later analysis. Settings software allows user to quickly view PQ report with limit lines and compliance results.

Figure 2: The sample of viewing power quality report parameters and log details with setting software MiQen

To analyse in details which and when certain parameters are outside limit lines it is possible to view time stamped details and with that establish true origin of anomaly and its consequences.

MEASUREMENTS

ONLINE MEASUREMENTS

Online measurements are available on display or can be monitored with setting and monitoring software *MiQen*.

Readings on display are performed continuously with refresh time dependent on set average interval whereas rate of readings monitored with *MiQen* is fixed and refreshed approx. each second.

For better overview over numerous readings, they are divided into several groups, which contain basic measurements, min. and max. values, harmonics, inter-harmonics, PQ parameters and alarms.

Each group can represent data in visually favored graphical form or detailed tabular form. Latter allows freezing readings and/or copying data into various report generation software tools.

INTERACTIVE INSTRUMENT

Additional communication feature of a device allows interactive handling with a dislocated device as if it would be operational in front of user.

This feature is useful for presentations or product training.

average interval, max. demand mode, reactive power calculation method ...

Complete selection of available online measuring quantities is shown in a table on the next page.

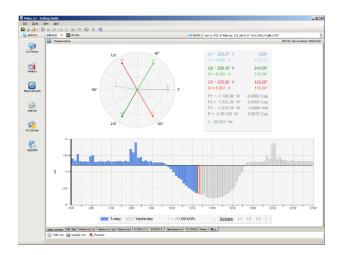


Figure 3: The sample of online measurements in graphical form – phase diagram and daily total active power consumption histogram

B. 📬 • 🗈		8				
Refresh	Address: 33 AMC774	i 🔿 G	ioto: • Device #33, IP A	ddress: 10.96.2.156, Port:	10001, Medbus TCP	
	Measurements				iMC7	74, Serial number: MC
	Phase measurements	L1	L2	L3	Total	Others
Connection	Votage	225.01 V	225,14 V	225.04 V		U* = 225.06 V
	Current	2.92 A	5.86 A	8.76 A	17.54 A	I*=5,85 A
	Active Power	0.269 kW	0.541 kW	0.808 kW	1.517kW	
0	Reactive Power	-0.601 kwar	-1,202 kvar	-1,798 kvar	-3,600 kvar	
Settings	Apparent Power	0,658 k.VA	1,318 kVA	1,971 kVA	3,947 kVA	
	Power Factor	1,0000 ind	0,4102 Cap	0,4098 Cap	0,4097 Cap	
_	Power Angle	0,00 *	-43,95 *	-43,99 *	-65,97 *	
(3)	Displacement Power Factor	1,0000 Ind	0,7200 Cap	0,7195 Cap	0.7132 Cap	
easurements	THD-Up	2,76 %	2,76 %	2,76 %		
	THD4	142,59 %	142,01 %	142,12 %		
	TDD-I	0.23 %	0.47 %	0.71 %		
50.00	Fundamental Reactive Power Ofund	-0,264 kvar	-0.529 kwar	-0,791 kvar	-1,584 kvar	
Analysis	Deformed Power D	0.538 kvar	1,077 kwar	1,610 kvar	3.224 kvar	
Analysis	Kfactor	73,37	72,99	73,00		
	Current Crest factor	403,4 %	403,5 %	403,5 %		
1	Voltage Crest factor	140,6 %	140,6 %	140,6 %		
My Devices	DC Voltage	1,03 V	1.04 V	0.68 V		
wy Devices	Phase to phase measurements	L1 - L2	L2 - L3	L3 - L1	Total	Others
	Phase to phase voltage	0.00 V	0.00 V	0.00 V		Upp~ = 0.00 V
	Phase Angle	-0.03 *	0.01 *	0.00 "		
. 5 0	THD-Upp	0.00 %	0,00 %	0,00 %		
Upgrades	Crest factor	0.0 %	0,0 %	0.0 %		
	DC Votage	-0,01 V	0,35 V	-0,35 V		
	Neutral line	Measured	Angle	Calculated	Error	DC
	Current	0,05 A	0.00 *	17,56 A	17,56 A	
	Mohana Measurements Min/Max Harmonics Up	150 31 V	-161 33 *			0.42 V

Figure 4: The sample of online measurements in tabular form

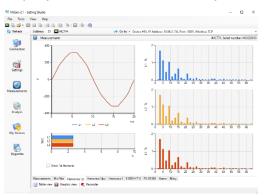


Figure 5: The sample of online harmonic measurements in graphical form

SELECTION OF AVAILABLE QUANTITIES

Available online measuring quantities and their appearance can vary according to set type of power network and other settings such as;

Iskra

Meas. type	Measurement	3-phase 4-wire	3-phase 3-wire	1-phase	comments	
hase	Voltage			-		
measurements	U _{1-3_TRMS}	\checkmark		☑ 1ph		
	Uavg_trms	\checkmark				
	Uunbalance_neg_TRMS					
	Uunbalance_zero_TRMS					
	U _{1-3_DC}	\checkmark		☑ 1ph	DC component of phase voltages	
	Current					
	I _{1-3_TRMS}	\checkmark	\checkmark	⊡1ph		
	I _{TOT_TRMS}	\checkmark	\checkmark			
	I _{AVG_TRMS}	\checkmark	\checkmark	\checkmark		
	I _{NEUTRAL_calc}	\checkmark	\checkmark	\checkmark	Calculated neutral current	
	Power					
	P _{1-3_TRMS}			⊡1ph		
	P _{TOT_TRMS}		\checkmark	$\overline{\mathbf{A}}$		
	Q _{1-3_TRMS}			☑1ph🚇	Reactive power can be calculated as a squared	
	Q _{TOT_TRMS}	\checkmark	\checkmark	\checkmark	difference between S and P or as delayed sample	
	S _{1-3_TRMS}	\checkmark		⊡1ph		
	S _{TOT_TRMS}	\checkmark	\checkmark			
	Qfund1-3_TRMS					
	Q _{fundTOT_TRMS}	\checkmark	\checkmark	\checkmark	Fundamental reactive power of first harmonics	
	D _{1-3_TRMS}			⊡ 1ph		
	D _{TOT_TRMS}		\checkmark		Deformed reactive power of harmonics	
	PF ₁₋₃	\checkmark		⊡1ph		
	PF _{TOT}		\checkmark			
	dPF ₁₋₃	\checkmark		⊡1ph		
	dPF _{TOT}	\checkmark	\checkmark		– Displacement Power Factor	
	φ ₁₋₃	\checkmark		⊡1ph	PA – Power angle	
	Harmonic analysis					
	THD-U ₁₋₃	\checkmark		⊡1ph		
	THD-I ₁₋₃	\checkmark	\checkmark	⊠1ph		
	TDD-I ₁₋₃	\checkmark	\checkmark	⊠1ph		
	U _{1-3_harmonic_1-63_%}			⊡1ph	% of TRMS or % of base	
	U _{1-3_harmonic_1-63_ABS}	\checkmark		⊡1ph		
	U _{1-3_harmonic_1-63_} φ	\checkmark		⊠1ph		
	U ₁₋₃ inter-harmonic %			⊡1ph	Monitoring up to 10 different fixed frequencies.	
	U _{1-3_inter-harmonic_ABS}	\checkmark		⊡1ph	of TRMS or % of base	
	U _{1-3_signaling_%}			⊡1ph	Monitoring of signaling (ripple) voltage of set	
	U _{1-3_signaling_ABS}			⊡1ph	frequency. % of TRMS or % of base	
	I _{1-3_harmonic_1-63_%}			⊡1ph	% of TRMS or % of base	
	I _{1-3_harmonic_1-63_ABS}	$\overline{\mathbf{V}}$	$\overline{\checkmark}$	⊡_ph		
	10_101101/05_AD3			⊡_p	+	

I

Meas. type	Measurement	3-phase 4- wire	3-phase 3-wire	1-phase	comments	
Phase measurements	Flickers					
	Pi ₁₋₃			⊠1ph	Instantaneous flicker sensation measured with 150 samples / sec (original sampling is 1200 samples / sec)	
	Pst ₁₋₃	\checkmark		☑ 1ph	10 min statistical evaluation (128 classes of CPF)	
	Plt ₁₋₃	\checkmark		☑ 1ph	Derived from 12 Pst acc. to EN 61000-4-15	
	Miscellaneous					
	K-factor ₁₋₃			⊠1ph		
	Current Crest factor I ₁₋₃		$\overline{\checkmark}$	⊠1ph		
Phase to phase	Voltage					
measurements	Upp _{1-3_TRMS}		\checkmark			
	Upp _{AVG_TRMS}		\checkmark			
	φ _{x-y}	\checkmark	\checkmark		Phase-to-phase angle	
	Harmonic analysis					
	THD-Upp ₁₋₃		\checkmark			
	Upp _{1-3_harmonic_1-63_%}				% of TRMS or % of base	
	Upp _{1-3 harmonic 1-63 ABS}		\checkmark			
	Upp _{1-3 harmonic 1-63} φ		\checkmark			
	Upp ₁₋₃ inter harmonic %				Monitoring up to 10 different fixed frequencies. %	
	Upp _{1-3 inter harmonic ABS}		\checkmark		of TRMS or % of base	
	Upp _{1-3_signaling_%}				Monitoring of signaling (ripple) voltage of set	
	Upp _{1-3_signaling_ABS}		\checkmark		frequency. % of TRMS or % of base	
	Flickers					
	Pi_pp ₁₋₃		V		Instantaneous flicker sensation measured with 150 samples / sec (original sampling is 1200 samples / sec)	
	Pst_pp ₁₋₃		\checkmark		10 min statistical evaluation (128 classes of CPF)	
	Plt_pp ₁₋₃				Derived from 12 Pst acc. to EN 61000-4-15	
	Miscellaneous					
	Uunderdeviation			⊡1ph	Uunder. and Uover. are calculated for phase or phase-to-phase voltages regarding connection	
	Uoverdeviation		\checkmark	⊡1ph	mode (only for iMC770)	
Metering	Energy					
	Counter E ₁₋₈				Each counter can be dedicated to any of four quadrants (P-Q, import-export, L-C). Total energy is	
	E_TOT_1-8				a sum of one counter for all tariffs. Tariffs can be	
	Active tariff			V	fixed, date/time dependent or tariff input dependent	
	Cost_by_meters ₁₋₄	\checkmark	\checkmark	\checkmark	Calculated costs depend on specified price per hour	
	Cost _{1-4_TOT}				and currency	
	Billing		$\overline{\checkmark}$			

I

Meas. type	Measurement	3-phase 4-wire	3-phase 3-wire	1- phase	comments
Maximum	Maximum demand				
demand	MD_I ₁₋₃			⊡ 1ph	
measurements	MD_P _{import}	\checkmark		\checkmark	
	MD_P _{export}	\checkmark		\checkmark	
	MD_Q _{ind}		\checkmark	$\overline{\checkmark}$	
	MD_Q _{cap}	\checkmark		\checkmark	
	MD_S	\checkmark		\checkmark	
Min and max	Min and max				
measurements	U _{1-3_TRMS_MIN}	\checkmark		⊠1ph	
	U _{1-3_TRMS_MAX}			⊠1ph	
	Upp _{1-3_TRMS_MIN}	\checkmark	\checkmark	\checkmark	
	Upp _{1-3_TRMS_MAX}	\checkmark	\checkmark	\checkmark	
	I _{1-3_TRMS_MIN}		\checkmark	⊠1ph	
	I _{1-3_TRMS_MAX}	\checkmark	\checkmark	⊠1ph	
	P _{1-3_TRMS_MIN}	\checkmark		⊠1ph	
	P _{1-3_TRMS_MAX}	\checkmark		⊠1ph	
	P _{TOT_TRMS_MIN}	\checkmark		⊠1ph	
	P _{TOT_TRMS_MAX}	\checkmark	\checkmark	⊠1ph	
	S _{1-3_TRMS_MIN}	\checkmark		⊠1ph	
	S _{1-3_TRMS_MAX}	\checkmark		⊠1ph	
	Stot_trms_min	\checkmark	\checkmark	⊠1ph	
	Stot_trms_max			⊠1ph	
	freq _{MIN}	\checkmark	\checkmark	\checkmark	
	freq _{MAX}	\checkmark	\checkmark	\checkmark	
Other	Miscellaneous				
measurements	freq _{MEAN}	\checkmark		\checkmark	
	Internal temp.		\checkmark	\checkmark	
	Date, Time		\checkmark	\checkmark	
	Last Sync. time		V		UTC

Generation See *iMC7×0 Power Monitoring Device* User's manual

Table 3: Selection of available measurement quantities

DESCRIPTION OF PROPERTIES

RECORDER

A built-in recorder (8 Mb) enables storing measurements, detected alarms and PQ reports with details. It supports recording of all measured quantities including voltage and current harmonics and inter-harmonics (up to 10 selected in a range to 63,5th) in 4 configurable partitions. For each partition is possible to set storage interval and other recording parameters.

Fifth partition is used for recording alarms. Each alarm triggered by pre-set limit lines is stored in a form of alarm i.d. and its timestamp.

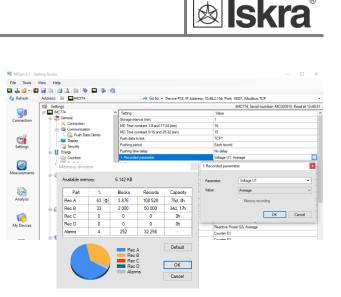
Sixth partition is used for PQ reports. Each report in recorder is identified by a monitoring interval (date).

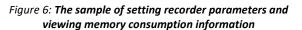
Last partition is used for PQ report details. They represent time stamped PQ values that are outside PQ limit lines.

Content of recorder can be viewed with monitoring software *MiQen* in a detailed tabular or visually favoured graphical form.

Memory card

The iMC770 Power Quality Analyzer is equipped with a front panel slot for full sized SD memory card that supports capacity up to 2 GB. It is intended for downloading internally stored data, uploading setting file and performing firmware upgrade.


Alarms


Alarms are powerful tool for **The iMC770 Power Quality Analyzer** control and supervision features. Devices' performance can with these features reach beyond measuring and analyzing power network.

The iMC770 Power Quality Analyzer supports recording and storing of 32 alarms in four groups. A time constant of maximal values in a thermal mode, a delay time and switch-off hysteresis are defined for each group of alarms.

For each parameter is possible to set limit value, condition and alarm activation action (sound signal and/or digital output switch if available).

All alarms are also stored in internal memory for post-analysis.

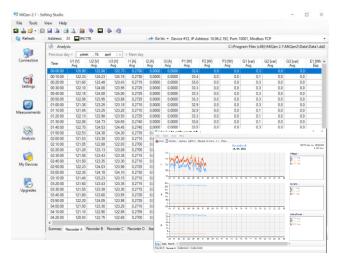


Figure 7: The sample of viewing recorder content in tabular and graphical form

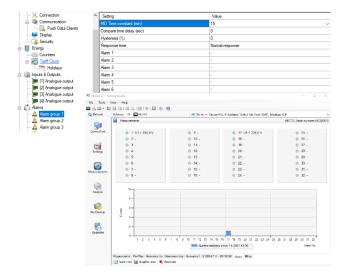


Figure 8: The sample of setting and viewing Alarms

REAL TIME SYNCHRONISATION

k Iskra°

Synchronized real-time clock (RTC) is an essential part of any Class A analyzer for proper chronological determination of various events.

To distinct cause from consequence, to follow a certain event from its origin to manifestation in other parameters it is very important that each and every event and recorded measurement on one instrument can be compared with events and measurements on other devices. Even if instruments are dislocated, which is normally the case in electro distribution network events must be timecomparable with accuracy better than a single period.

For this purpose, instruments normally support highly accurate internal RTC. Still this is not enough, since temperature is location dependant and it influences its precision. For that reason, it is required to implement periodical RTC synchronization.

The iMC770 Power Quality Analyzer supports Network time protocol synchronization (NTP).

Network time protocol (NTP):

Synchronization via Ethernet requires access to a NTP server.

NOTE: NTP can usually maintain time to within tens of milliseconds over the public Internet, but the accuracy depends on infrastructure properties - asymmetry in outgoing and incoming communication delay affects systematic bias. It is recommended that dedicated network rather than public network is used for synchronisation purposes.

COMMUNICATION

The *iMC770 Power Quality Analyzer* has a wide variety of communication possibilities to suit specific demands. It is equipped with standard communication port COM1 and auxiliary communication port COM2. This allows two different users to access data from a device simultaneously and by using TCP/IP communication, data can be accessed worldwide.

COM2 port is optional and can be ordered as one of I/O modules.

Different configurations are possible (to be specified with an order).

Configuration	COM1	COM2
1	RS232/485	/
2	RS232/485	RS232 or RS485
3 ⁽¹⁾	Ethernet & USB	/
4 ⁽¹⁾	Ethernet & USB	RS232 or RS485

⁽¹⁾ Galvanic separation between Eth. and USB is 1 kVACTRMS

Table 4: List of communication configurations

The iMC770 Power Quality Analyzer supports standard communication protocols MODBUS RTU, TCP and DNP3 L1.

Additionally, it supports proprietary PUSH communication mode, which is used in system applications where devices send predefined readings in predefined time intervals in XML format.

Analogue extender EX104 (accessory)

If there is a demand for additional analogue outputs analogue extender EX104 can be used.

It is a standalone unit, connected to meter via module 2 (module for communication with EX104 needs to be specified at order). Up to 4 analogue outputs can be used with one extender. Up to 4 extenders EX104 can be used with one meter. More information can be found in Analogue extender EX104 data sheet (E P22.495.400).

Measurement inputs

Nominal frequency range Measuring frequency range	50 Hz, 60 Hz 16 Hz–400 Hz
Voltage measurements:	
Number of channels	4 (1)
Sampling rate	32 kHz
Min. voltage for sync.	1 V _{TRMS}
Nominal value (U _N)	500 V _{LN} , 866 V _{LL}
Max. measured value (cont.)	600 V _{LN} ; 1000 V _{LL}
Max. allowed value	$1.2 \times U_N$ permanently
	2 × U _N ; 10 s
Consumption	$< U^2 / 4.2 M\Omega$ per phase
Input impedance	4.2M Ω per phase

 $^{(1)}$ 4 th channel is used for measuring U $_{\text{EARTH-NEUTRAL}}$

Current measurements:

Number of channels	3
Sampling rate	32 kHz
Nominal value (І _{мом})	1 A, 5 A
Max. measured value (I1-I3	12.5 A sin.
only)	
Max. allowed value	15 A cont.
(thermal)	
	≤ 300 A; 1s
Consumption	< $l^2 \times 0.01\Omega$ per phase

Basic accuracy under reference conditions

Accuracy is presented as percentage of reading of the measurand except when it is stated as an absolute value.

Measurand	Accuracy class	According to
Voltage L-N, L-L	0.1	EN 61557-12
Current	0.1	EN 61557-12
Active power ($I_N = 5 A$)	0.2	EN 61557-12
Active power $(I_N = 1 A)$	0.5	EN 61557-12
Active energy	Cl. 0.2S	EN 62053-22
Reactive energy	CL 0.5S	EN 62053-24
Frequency (f)	0.02 Class A	EN 61557-12
Power factor (PF)	0.5	EN 61557-12
THD (U)	0.3	EN 61557-12
THD (I)	0.3	EN 61557-12
Real time clock (RTC)	< ± 1 s/day	IEC61000-4-30

All values required for PQ analysis, which should be measured according to IEC61000-4-30 correspond to Class A accuracy.

For complete overview of accuracy for all measured parameters and measuring ranges see Users' manual.

INPUT/OUTPUT modules

The iMC770 Power Quality Analyzer is equipped with two main I/O slots. According to order, each slots' function can be as presented in a table below.

& Iskra

Module type	<i>Number of I/O per module</i>
Relay output (RO)	2
Analogue output (AO)	2 x 20 mA
Analogue input (AI)	2
Pulse output (PO)	2
Pulse input (PI)	2
Bistable Digital output (BO)	1
Digital output (DO)	2
Digital input (DI)	2
Tariff input (TI)	2
Additional communication port (COM2)	1
Status output (WO)	1 + 1xRO
Communication port for analogue extender EX104	1

Table 5: List of available I/O modules

Analogue input:

Three types of analogue inputs are suitable for acquisition of low voltage DC signals from different sensors. According to application requirements it is possible to choose current, voltage or resistance (temperature) analogue input. They all use the same output terminals.

MiQen software allows setting an appropriate calculation factor, exponent and required unit for representation of primary measured value (temperature, pressure, wind speed ...).

DC current input:

Nominal input range	–20 mA020 mA (±20%)
Input resistance	20 Ω
Accuracy	0.5 % of range
Temperature drift	0.01% / °C
Conversion resolution	16 bit (sigma-delta)
	internally referenced
Analogue input mode	Single-ended

5 V-48 VDC (±20 %)

8 mA (at 48 V_{DC} + 20 %)

(40...120) % of rated voltage

(0...10) % of rated voltage

DC voltage input:

Nominal input range	–10 V010 V (±20%)
Input resistance	100 kΩ
Accuracy	0.5 % of range
Temperature drift	0.01% / °C
Conversion resolution	16 bit (sigma-delta) internally
	referenced
Analogue input mode	Single-ended

Resistance (temperature) input:

Nominal input range	0 Ω - 200 Ω (max. 400 Ω)
(low)*	PT100 (-200°C–850°C)
Nominal input range	0 kΩ – 2 kΩ (max. 4 kΩ)
(high)*	PT1000 (-200°C–850°C)
Connection	2-wire
Accuracy	0.5 % of range
Conversion resolution	16 bit (sigma-delta) internally
	referenced
Analogue input mode	Single-ended
* Low or high input range and	l primary input value (resistance or

temperature) are set by the MiQen setting software

Analogue output:

Output range	0 mA20 mA
Accuracy	0.5% of range
Max. burden	150 Ω
Linearization	Linear, Quadratic
No. of break points	5
Output value limits	\pm 120% of nominal output
Response time	depends on set general average
(measurement and	interval
analogue output)	(0.1 s – 5 s)
Residual ripple	< 1 % p.p.

Outputs may be either short or open-circuited. They are electrically insulated from each other and from all other circuits.

Output range values can be altered subsequently (zoom scale) using the setting software, but a supplementary error results.

Digital input:

Purpose	Tariff input, Pulse input, General purpose digital input
Tariff input	
No. of inputs per module	2
module	
Rated voltage	5 V48 V _{AC/DC} *
	110 ± 20 % V _{AC/DC} *
	230 ± 20 %V _{AC/DC} *
	*Depends on a build in hardware
Frequency range	45 Hz65 Hz

Pulse input

No. of inputs per
module
Rated voltage
Max. current
Min. pulse width
Min. pulse period
SET voltage
RESET voltage

General purpose

digital input No. of inputs per module

2

Relay switch

output (watchdog)

Min. length 100 ms

Bistable Relay switch

digital output

1000 mA

1000 mA

230 V_{AC/DC} ± 20% max

 $\leq 100 \ m\Omega \ (100 \ mA, 24 \ V)$ Max. 4000 imp/hour

2

2

0.5 ms

2 ms

5 V...48 VAC/DC* 110 ± 20 % VAC/DC* 230 ± 20 %VAC/DC* *Depends on a build in hardware

Alarm output, General purpose Digital output, Pulse output, Status

Digital output:

Voltage

Type No. of outputs per module Purpose Rated voltage Max. switching current Contact resistance Impulse

Type

No. of outputs per module Purpose

Max. switching current Contact resistance

Туре

No. of outputs per module Purpose Rated voltage Max.switching Pulse length

Optocoupler open collector switch

 $\leq 100 \ m\Omega \ (100 \ mA, 24 \ V)$

Alarm output, General purpose

2

1

Pulse output 40 VAC/DC $30 \text{ mA} (R_{ONmax} = 8 \Omega)$ programmable (2 ms... 999 ms)

96 mm × 96 mm × 96.5 mm

Panel mounting

96 mm × 96 mm

92 mm × 92 mm

Acc. to UL 94 V-0

Acc. to UL 94 V-0

PC/ABS

550 g

PC/ABS

Туре

No. of outputs	1 x watchdog + 1 x relay output
Normal operation	Relay in ON position
Failure detection delay	≈1.5 s
Rated voltage	230 V _{AC/DC} ±20 % max
Max. switching current	1000 mA
Contact resistance	≤ 100 mΩ (100 mA, 24 V)

Power Supply

Standard:	CAT III 300V
Nominal voltage AC	48 V 276 V
Nominal frequency	40 Hz 65 Hz
Nominal voltage DC	20 V 300 V
Consumption (max. all I/O)	< 8 VA
Power-on transient current	< 20 A; 1 ms

AC power supply		CAT III 300 V
Nominal voltage AC		110 V, 230 V or 400 V
Nominal frequency		40 Hz 65 Hz
Consumption (max. I/O)	all	< 8 VA

Safety

Safety:	protection class II
\square	functional earth terminal must be connected to earth potential!
	Voltage inputs via high impedance Double insulation for I/O ports and COM ports
Pollution degree:	2
Test voltages:	U _{AUX} against SELV circuits –
	3.51 kV RMS
	Other circuits to functional earth –
	2.21 kV RMS
EMC:	Directive on electromagnetic
	compatibility 2004/108/EC
	In compliance with EN 61326-1:2013
	for industrial enviroment
Protection:	In compliance with
	EN 60592: 1997/A1:2000
	Front side (with protection cover for
	memory slot: IP40
	Rear side (with protection cover): IP20

Mechanical

Relay switch

Required mounting hole Enclosure material Flammability Weight Enclosure material

Ambient conditions

Amplent conditions	
Ambient temperature	K55 temperature class
	Acc. to EN61557-12
	-10 °C55 °C
Storage temperature	-40 °C to +70 °C
Ambient humidity	\leq 75% r.h. (no condensation)
Max. storage and transport humidity	\leq 90% r.h. (no condensation)
Voltage and Current max.	± 20 ppm / K
temperature influence limit	(10 V-600 V; 0.05 A-10 A)
	(T _{amb} : -30°C to +70°C)

Technical Documentation

Real time clock

A built-in real time clock is also without external synchronization very stable when device is connected to auxiliary power supply. For handling shorter power interruptions without influence on RTC, device uses high capacity capacitor battery. It ensures auxiliary supply (for internal RTC only) for more than two days of operation (6 years with battery).

To enable clock operation backup supercap or battery is built-in.

Supercap life span	approx. 2 days
Туре	Low power embedded RTC
RTC stability	< 1 sec / day
Battery life span	approx. 6 years (at 23 °C)

Connection cables

The iMC770 Power Quality Analyzer is equipped with European style pluggable terminals for measuring voltages, auxiliary supply, communication and I/O modules.

Measuring current cables can be connected in two ways. They shall be attached as through-hole connection without screwing or as detachable screw terminals.

NOTE: Stranded wire must be used with insulated end sleeve to assure firm connection.

Voltage inputs (4)	\leq 2.5 mm² , AWG 24-12 single wire
Current inputs (3)	\leq Ø6 mm one conductor with insulation
Supply (3)	\leq 2.5 mm 2 , AWG 24-12 single wire
Com (5), I/O (6)	\leq 2.5 mm 2 , AWG 24-12 single wire

MiQen - setting and acquisition Software

MiQen software is intended for supervision of *iMC770* and many other instruments on a PC. Network and the device setting, display of measured and stored values and analysis of stored data in the device are possible via the serial, Ethernet or USB communication. The information and stored measurements can be exported in standard Windows formats. Multilingual software functions on Windows XP operating system or higher.

MiQen 2.1 - Se	tting Studio				- 🗆 ×
File Tools	View Help				
📫 🛃 💕 • 🖆	1 🖬 🕼 🍕 🔍 📖 🔌 🖬 🧇 🍕	3			
Refresh	Address: 33 MC770	1	Go to: • Device #33, IP Address: 10.98	6.2.192, Port: 10001, Modbus TCP	
-	Ci Settings			iMC770, Serial number: MC	034315, Read at 07:38:48
	□- □ iMC770	Setting		Value	
Connection	General	Output parameter		Total Active Power P	~
	Connection	Output range		20 mA	
- 23	Push Data Clients	Output signal		Linear	
(3)	Display				
Settings	- Security				
	🗊 - 🚺 Energy				
0					
(()	Tarff Clock		Sensor characteristics		× .
Measurements	inputs & Outputs				
	[1] Analogue output		6 (O.) I		
12238	- JP [2] Analogue output		Sensor / Output:		~
204	- J Analogue output		Measuring parameter unit:	% (without prefix)	
Analysis	[4] Analogue output		measuring parameter unit.	(with locit prenk)	
	Aams		Description:		
	-A Alam group 1				
	Alam group 3				
My Devices	Alam group 4		0 ohm = 0 %	> 15	
	- 😒 Standard recorders			10	
	-S Trend recorder A		200 ohm = 100 %	5	
5	Trend recorder B			0	
Upgrades	Trend recorder C		Exponent: 0 🜩	-5	
	Power supply quality			-10	
	- Frequency variations		Example:	-15	
	Voltage variations	Output par	Example.	-100 0	100
	- 💡 Voltage changes	Parameter to	100 ohm = 24,2 °C		x
	- 9 PQ events				
	E- M Hamonics & THD	~			
				OK	Cancel

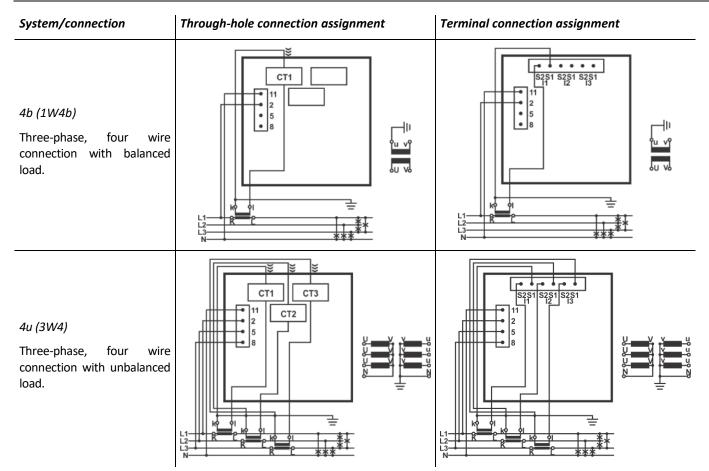
Figure 9 MiQen setting and acquisition software

MiQen software is intended for:

- Setting all of the instruments parameters (online and offline).
- Viewing current measured readings and stored data.
- Setting and resetting energy counters.
- Complete I/O modules configuration.
- Evaluation of the electricity supply quality in compliance with SIST EN 50160.
- Viewing and exporting time-stamped PQ anomaly details.
- Upgrading instruments firmware.
- Searching the net for devices.
- Virtual interactive instrument.
- Comprehensive help support.

NOTE!

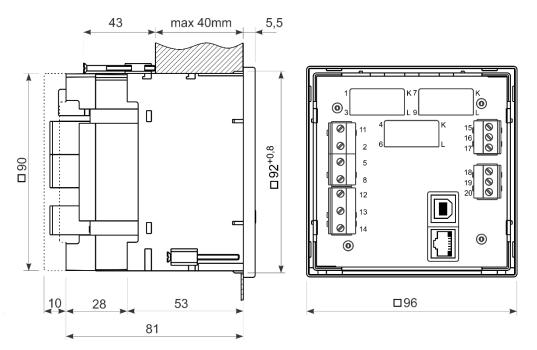
MiQen software functions depend on the type of connected device.



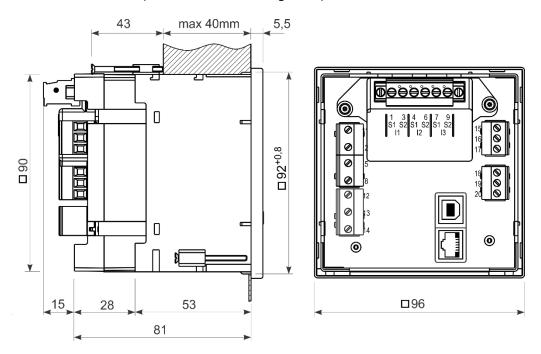
CONNECTION

Two possible connections of current are available, through-hole connection and terminal connection (see pictures below).

System/connection	Through-hole connection assignment	Terminal connection assignment
1b (1W1b) Single-phase connection.		
<i>3b (1W3b)</i> Three-phase, three-wire connection with balanced load.		
<i>3u (2W3u)</i> Three-phase, three-wire connection with unbalanced load.		

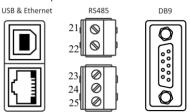


I



DIMENSIONAL DRAWING

Dimensions for iMC770 (through-hole connection assignment):



Dimensions for iMC770 (terminal connection assignment):

Terminals options

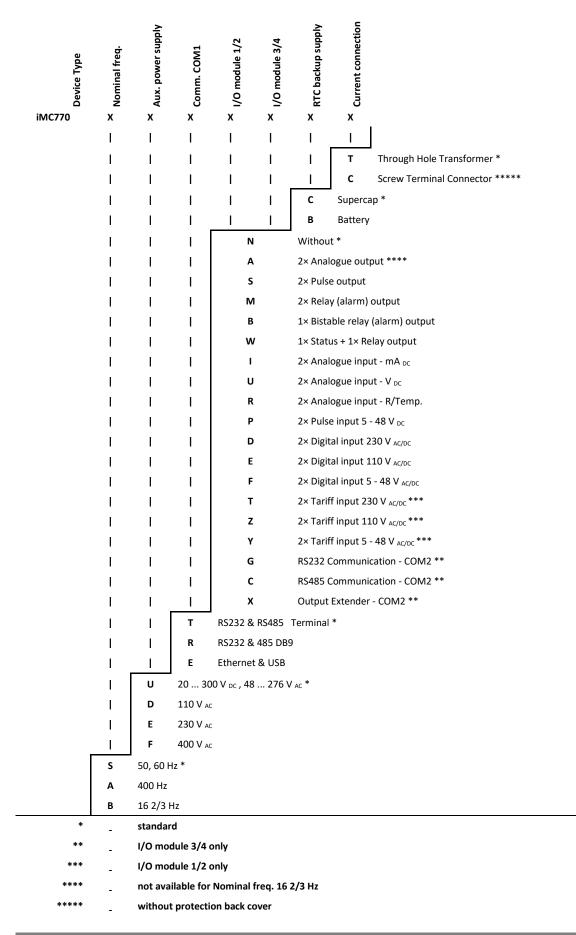
lskra®

Connection table

Function			Terminals	Comment
		IL1	1/3	
	AC current	IL2	4/6	CAT II 600V CAT III 300V
		IL3	7/9	
Measuring input:		UL1	2	
	AC voltage	UL2	5	
	AC VOILage	UL3	8	CAT III 300V
		UN	11	
		⊖ *+	15	
	Module 1/2	⊖>− (common)	16	
Inputs/outputs:		⊖++	17	
inputs/outputs.		⊖>+	18	
	Module 3/4	⊖>- (common)	19	
		⊖*+	20	
		+ / AC (L)	13	CAT III 300V
Auxiliary power supply:		-/AC (N)	14	
		GROUND	12	GROUND terminal must be always connected !!
	RS485	А	21	RS232 and RS485 are both supported, but only
Communication:		В	22	one at the time can be used!
	RS232	RX	23	In case of Ethernet / USB communication,
		GND	24	terminals from 21 to 25 are replaced with RJ45
		ТХ	25	and USB-B.
Communication: DB9 female	RS232	Rx	3	
		Ŧ	5	RS232 and RS485 are both supported, but only one at the time can be used!
		Тх	2	
	RS485	В	7	
		A	8	

Table 6: Connections

DATA FOR ORDERING


When ordering *iMC770 Power Quality Analyzer*, all required specifications shall be stated in compliance with the ordering code. Additional information could be stated. Note that fixed or programmable specifications are not part of ordering code.

I

Iskra

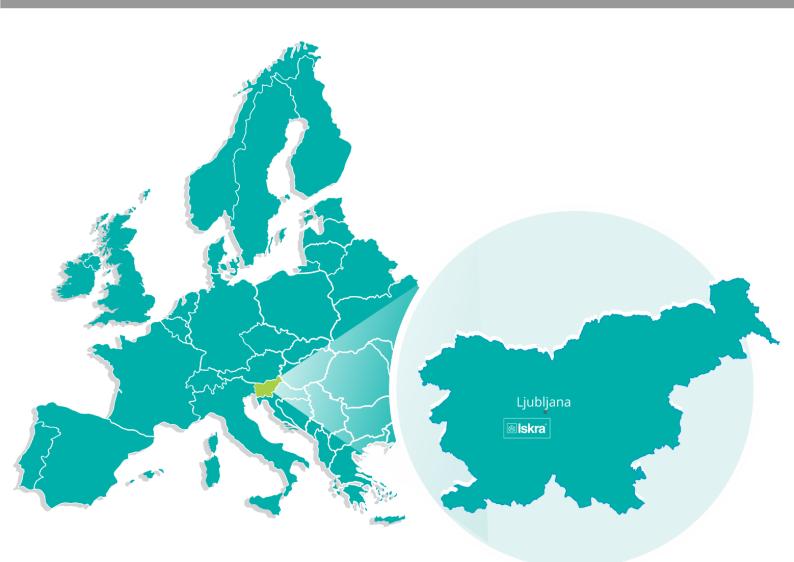
General ordering code

The following specifications shall be stated:

Example of ordering:

iMC770 with a universal supply is connected to 230 V voltage and 5 A secondary current on 50 Hz network. Ethernet & USB communication, watchdog output (plus one relay output) as I/O 1/2 and two pulse outputs as I/O 3/4. RTC with supercap supply. Through-hole type current transformers.

Voltage and current nominal value are due to auto-range fixed to max. nominal value and are therefore omitted from ordering code.


Connection type is user programmable and is therefore omitted from ordering code. Default is 4u connection.

Example ordering code:

iMC770	S	U	Е	W	S	С	т
	Ι	Ι	Ι	Ι	I	Ι	I
	Ι	Ι	Ι	Ι	Ι	Ι	Through Hole Transformer
	Ι	Ι	Ι	Ι	Τ	Sup	percap
	Ι	Ι	Ι	Ι	2×	Pulse	output
	Ι	Ι	Ι	1× :	Statu	ıs (W	atchdog) + 1× Relay output
	Ι	Ι	Eth	nerne	t & L	JSB	
	Ι	Un	ivers	al (20	D V D	С З	800 V DC, 48 V AC 276 V AC)
	50	Hz, 6	50 H	z			

DICTIONARY:

PQ	Power Quality alias Voltage Quality
TRMS	True Root Mean Square
RMS	Root Mean Square
PA	Power angle (between current and voltage)
PF	Power factor
VT	Voltage measuring transformer
СТ	Current measuring transformer
THD	Total harmonic distortion
Ethernet	IEEE 802.3 data layer protocol
MODBUS	Industrial protocol for data transmission
MiQen	ISKRA setting and acquisition Software
AC	Alternating quantity
RTC	Real Time Clock
IRIG	Inter-range instrumentation group time codes
NTP	Network Time Protocol

Iskra, d.o.o. BU Ljubljana Stegne 21 SI-1000 , Ljubljana Phone: + 386 1 513 10 00

Iskra IP, d.o.o. Vajdova ulica 71 SI-8333 , Semič Phone: +386 7 384 94 54

Iskra Sistemi - M dooel UI, Dame Gruev br. 16/5 kat 1000 , Skopje Phone: +389 75 444 498 Iskra, d.o.o. BU Capacitors Vajdova ulica 71 SI-8333 , Semič Phone: +386 7 38 49 200

Iskra STIK, d.o.o. Ljubljanska cesta 24a SI-4000 , Kranj Phone: +386 4 237 22 33

Iskra Commerce, d.o.o. Hadži Nikole Živkoviča br. 2 11000 , Beograd Phone: +381 11 328 10 41 **Iskra, d.o.o. BU MIS** Ljubljanska c. 24a

SI-4000 , Kranj Phone: +386 4 237 21 12

Iskra Lotrič, d.o.o. Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12

Iskra Hong Kong Ltd. 33 Canton Road, T.S.T. 1705 , China HK City Phone: +852 273 00 917 Iskra, d.o.o. BU Batteries & Potentiometers Šentvid pri Stični 108 SI-1296 , Šentvid pri Stični Phone: +386 1 780 08 00

Iskra ODM, d.o.o. Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12

ISKRA ELECTRONICS GmbH Südliche Münchner Str. 55 82031 Grünwald Deutschland Iskra, d.o.o. BU Electroplating

Glinek 5 SI-1291 , Škofljica Phone: +386 1 366 80 50

Iskra Tela L, d.o.o. Omladinska 66 78250 , Laktaši Phone: +387 51 535 890

Iskra, d.o.o. Stegne 21 SI-1000 Ljubljana, Slovenia

Phone: +386 (0) 1 513 10 00 www.iskra.eu