ENERGY SECTOR

POWER QUALITY ANALYZER MC774

- Class A measuring accuracy according to EN61000-4-30.
- Evaluation of power quality in compliance with EN 50160.
- Voltage and current auto range measurements up to 1000 V_{RMS} , 12.5 A.
- 4 voltage and 4 current channels with 32µs sampling time.
- Wide frequency measurement range 16 Hz 400 Hz.
- Up to three independent communication ports.
- Support for GPS, IRIG-B and NTP real time synchronisation.
- Up to 20 inputs/outputs.

FEATURES

ø Iskra°

- Evaluation of the electricity supply quality in compliance with EN 50160 with automatic report generation.
- Measurements of instantaneous values of more than 140 quantities including harmonics, flicker, power line signalling voltage, unbalance ...
- Class A (0.1%) accuracy in compliance with EN61000-4-30.
- Four quadrant energy measurement with class 0.2S for active energy, 8 programmable counters, up to four tariffs, tariff clock ...
- Automatic range selection of 4 current and 4 voltage channels (max. 12.5 A and 1000 VRMS) with 32 kHz sampling rate.
- Recording all measured parameters including all voltage and current harmonics up to 65th, 32 adjustable alarms, anomalies and quality reports in the internal memory.
- Measurements of 40 minimal and maximal values in different time intervals (from 1 to 256 periods).
- Frequency range from 16 Hz to 400 Hz.
- Up to three independent communication ports (RS 232/485 up to 115,200 bit/s, Ethernet and USB 2.0).
- MODBUS and DNP3 communication protocols.
- Support for GPS, IRIG-B (modulated and digital) and NTP real time synchronisation.
- Up to 20 inputs and outputs (analogue inputs/outputs, digital inputs/outputs, alarm/watchdog outputs, pulse input/outputs, tariff inputs).
- Multilingual support.
- Universal power supply (two voltage ranges).
- o 144 mm square panel mounting.
- o User-friendly setting and evaluation software, MiQen.

DESCRIPTION

MC774 is an important device for permanent monitoring of power quality from its production (especially renewable), transmission, distribution to final consumers, who are most affected by insufficient quality of voltage. Lack of information about supplied quality of voltage can lead to unexplained production problems and malfunction or even damage to equipment used in production process. Therefore, **MC774** can be used for utility purposes (evaluation against standards) as well as for industry purposes (monitoring supplied power quality).

MC774 performs measurements in compliance with regulatory requested standard EN 61000-4-30 and evaluates recorded parameters for analysis according to parameters defined in European supply quality standard EN 50160:2011.

Moreover **MC774** stores measurements and quality reports in internal memory for further analysis over recorded measurements. By accessing recorded or real time values from multiple instruments installed on different locations it is possible to gain the overall picture of systems' behaviour. This can be achieved with regard to **MC774** accurate internal real time clock and wide range of synchronization sources support, which assure accurate, time-stamped measurements from dislocated units.

All required measurements, weekly PQ reports and alarms can also be stored locally in an internal memory. Stored data can be then transferred to a memory card or accessed through communication for post analysis.

APPLICATION AND BENEFITS

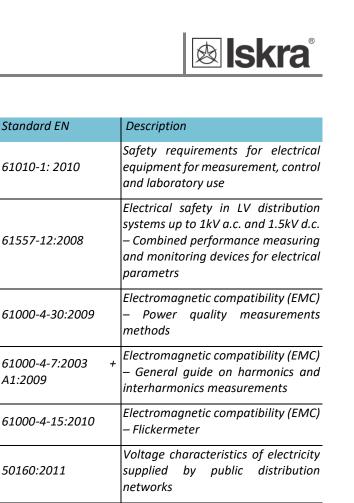
MC774 Quality Analyser can be used as a standalone PQ monitoring device for detection of local PQ deviations. For this purpose it is normally positioned at the point-of-common-coupling (PCC) of small and medium industrial and commercial energy consumers to monitor quality of delivered electric energy or at medium or low voltage feeders to monitor, detect and record possible disturbances caused by (unauthorized) operation of consumers.

Identifying relevant fixed measuring points is the most important task prior to complete system installation. This system itself will not prevent disturbances in network but it will help diagnose their origin and effects. And this is possible only with system approach by using time synchronized meters and predefined measuring parameters relevant for each individual measuring point.

Therefore the most extensive benefits are achieved when **MC774** is used as a part of an energy monitoring system comprising of strategically positioned meters connected to **MiSMART** software solution. This three-tier middleware software represents a perfect tool for utility companies, energy suppliers and other parties on both ends of supply-demand chain. **MiSMART data collector** with "push" communication system allows automatic records of all predefined measuring parameters. They are stored in **MiSMART database**, while leaving a copy of same parameters stored locally in memory of each device as a backup copy. Database records in XML format can be searched and viewed in tabelaric and graphical form using **MiSMART client** or other third-party application software.

Database records can involve numerous parameters of three-phase system, power quality parameters, physical parameters (temp., pressure, wind speed ...) as well as alarms and detailed time-stamped event logs.

COMPLIANCE WITH STANDARDS


Measurements and reports of power (voltage) quality (PQ) indexes are only useful when can be compared with measurements and reports from other PQ measuring devices in the supply network and evaluated against agreed limits for assessment of measured PQ indexes to establish an overall view about PQ issues in the network.

For this purpose it is essential to follow guidelines described in series of international and local standards. Beside requirements for safe operation (LVD directive) and immunity against more and more demanding disturbances (EMC directive), PQ measuring depends on two levels of standardization:

Procedures for proper acquirement of PQ indexes, their timed aggregation and required accuracy are described in a standard IEC EN 61000-4-30 and two supplementary standards IEC EN 61000-4-7 (harmonics), IEC EN 61000-4-15 (flickermeter)

Procedures for evaluation of measured PQ indexes according to limit levels described in European standard EN 50160

MC774 Quality Analyser follows required procedures and meets the precision requirements for class A measuring device as described in standard IEC EN 61000-4-30. It uses acquired measurements to perform automatic evaluation of PQ according to EN 50160 and issues weekly reports. In case if certain PQ indexes fail to meet required quality it also shows details of problematic measurements and time of occurrence of discrepancy.

Electricity metering equipment -

Static meters for active energy

Electricity metering equipment -

Static meters for reactive energy

EMC requirements for electrical

equipment for measurement, control

Degrees of protection provided by

Environmental testing (-1 Cold, -2

Dry heat, -30 Damp heat, -6

Tests for flammability of plastic

materials for parts in devices and

(classes 0,2 S and 0,5 S)

(classes 2 and 3)

and laboratory use

enclosures (IP code)

Vibration, -27 Shock)

appliances

Table 1: List of applicable standards

A1:2009

62053-22:2003

62053-23:2003

61326-1:2006

60068-2-1/

6/-27/-30

UL 94

0

60529:1997/A1:200

-2/

3

VOLTAGE QUALITY

Voltage Quality is well defined term (sometimes also termed Power Quality – PQ) and is covered with a selection of parameters, each of which represents certain phenomenon. They represent only most common types of phenomena which can describe operation of electrical network with closest approximation.

MC774 Quality Analyser measures, detects, stores and evaluates parameters, which are defined in several standards. Evaluation is by default performed according to limits set in European standard EN50150. Beside that users can always alter parameters according to their requirements or according to immunity of their equipment which operates within analyzed power network.

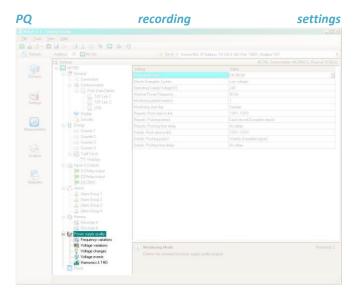


Figure 1 Settings for power quality parameters are set with setting and monitoring software MiQen

Characteristic parameters that describe power quality are shown in table 1:

Phenomena	PQ Parameters
Frequency variations	Frequency distortion
Voltage variations	Voltage fluctuation
	Voltage unbalance
Voltage changes	Rapid voltage changes
	Flicker
Voltage events	Voltage dips
	Voltage interruptions
	Voltage swells
Harmonics & THD	Harmonics
	Interharmonics
	Signalling voltage

Table 2 Voltage quality parameters as defined in EN50160

PQ reports

PQ report is issued on a basis of chosen PQ parameters as well as information about a period of tracking and place of tracking (type of network).

Each record is internally stored for later analysis. Settings software allows user to quickly view PQ report with limit lines and compliance results.

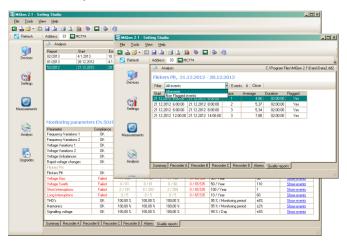


Figure 2 Viewing power quality report parameters and log details with setting software MiQen

To analyze in **details** which and when certain parameters are outside limit lines it is possible to view time stamped details and with that establish true origin of anomaly and its consequences.

lskra®

MEASUREMENTS

Online measurements

Online measurements are available on display or can be monitored with setting and monitoring software *MiQen*.

Readings on display are performed continuously with refresh time dependent on set average interval whereas rate of readings monitored with *MiQen* is fixed and refreshed approx. each second.

For better overview over numerous readings, they are divided into several groups, which contain basic measurements, min. and max. values, harmonics, PQ parameters and alarms.

Each group can represent data in visually favored graphical form or detailed tabelaric form. Latter allows freezing readings and/or copying data into various report generation software tools.

Interactive instrument

Additional communication feature of a device allows interactive handling with a dislocated device as if it would be operational in front of user.

This feature is useful for presentations or product training.

Selection of available quantities

Available online measuring quantities and their appearance can vary according to set type of power network and other settings such as; average interval, max. demand mode, reactive power calculation method ...

Complete selection of available online measuring quantities is shown in a table on the next page.

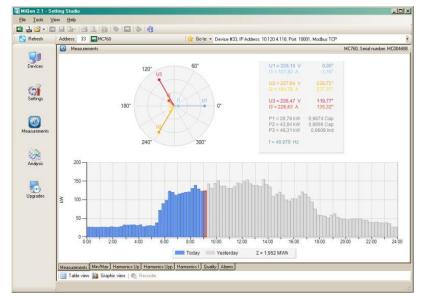


Figure 3 Online measurements in graphical form – phase diagram and daily total active power consumption histogram

Refresh	Address: 33 Address: 33	1 🚖 (ioto: • Device #33, IP A	ddress: 10.120.4.118, Port	10001, Modbus TCP	
	Measurements				м	C760, Serial number: MCI
	Phase measurements	LI	L2	L3	Total	Others
Devices	Voltage	228.21 V	227,61 V	226,73 V		U~ = 227,50 V
	Current	145,73 A	197,17 A	233,06 A	575,97 A	I~ = 191,98 A
	Real Power	32,96 KW	44,63 kW	50,59 kW	128,20 kW	Inc = 55,9 A
Settings	Reactive Power	4,35 kvar	4,53 kvar	15,23 kvar	24,11 kvar	
Settings	Apparent Power	33,25 kVA	44,87 kVA	52,83 kVA	130,98 kVA	
00000	Power Factor	0,9914 Ind	0,9947 Ind	0,9575 Ind	0,9788 Ind	
	Power Angle	2.82 *	0.55 *	16,40 *	10.65 *	
	THD-Up	1,88 %	1,87 %	1,79 %		
leasurements	THD-I	12,19 %	9,87 %	5,83 %		
redraciions	Phase to phase measurements	L1 · L2	L2 · L3	L3 - L1	Total	Others
	Phase to phase voltage	395,18 V	393,31 V	393,76 V		Upp~ = 394,08 V
10A	Angle	120,19 *	119,91 *	119,87 *		Uu = 0,00 %
	THD-Upp	1,90 %	1,72 %	1,81 %		and allow a bit marked
Analysis	Energy counters	Counter E1 (Exp)	Counter E2 (Exp)	Counter E3 (Imp)	Counter E4 (Imp)	Active tariif
	Total	1.726.219,60 kWh	294.607,13 kvarh	0,22 kWh	50.941,87 kvarh	81
	Tariff 1	1.726.219,55 kWh	294.607,10 kvath	0,21 kWh	50.941,84 kvarh	
5	Tariff 2	0,00 kWh	0,01 kvarh	0,00 kWh	0,00 kvarh	
Upgrades		Jp Harmonics Upp Harmonics		0,00 KWW	0,00 10 411	-

Figure 4 Online measurements in tabelaric form

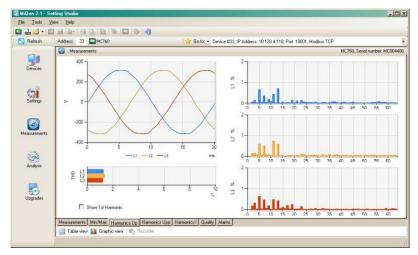


Figure 5 Online harmonic measurements in graphical form

Meas. type	Measurement	3-phase 4-	· 3-phase 3-	1-phase	Comments
		wire	wire		
hase	Voltage				
measurements	U _{1-3_RMS}			⊠1ph	
	U _{AVG_RMS}			\checkmark	
	Uunbalance_neg_RMS				
	Uunbalance_zero_RMS				
	U _{1-3_DC}			⊠1ph	DC component of phase voltages
	Current				
	I _{1-3 RMS}		\checkmark	⊡1ph	
	I _{TOT_RMS}		\checkmark	\checkmark	
	I _{AVG_RMS}				
	Power				
	P _{1-3_RMS}	\checkmark		⊡ 1ph	
	PTOT_RMS	$\overline{\checkmark}$	\checkmark		
	Q _{1-3_RMS}			⊡ 1ph	reactive power can be calculated as a squared
	_		\checkmark		difference between S and P or as sample delayed
	QTOT_RMS		<u></u>	⊡ ⊡1ph	
	S _{1-3_RMS}		\checkmark		
	Stot_rms	V	V		
	PF _{1-3_RMS}			⊠1ph	
	PF _{TOT}		\checkmark		
	Φ1-3_RMS			⊠1ph	
	Harmonic analysis				
	THD-U ₁₋₃			⊠1ph	
	THD-I ₁₋₃	$\overline{\checkmark}$	\checkmark	⊠1ph	
	TDD-I ₁₋₃			⊠1ph	
	U _{1-3_harmonic_1-63_%}			☑1ph🛄	% of RMS or % of base
	U _{1-3_harmonic_1-63_ABS}			⊠1ph	
	U _{1-3_harmonic_1-63_φ}	\checkmark		⊡1ph	
	U _{1-3_inter-harmonic_%}			⊠1ph🛄	monitoring up to 10 different fixed frequencies. % c
	U _{1-3_inter-harmonic_ABS}	\checkmark		⊡1ph	RMS or % of base
	U _{1-3_signaling_%}			☑1ph🛄	monitoring of signalling (ripple) voltage of set
	U _{1-3_signaling_ABS}			⊡1ph	frequency. % of RMS or % of base
	I _{1-3_harmonic_1-63_%}			⊡1ph	% of RMS or % of base
	I-3 harmonic 1-63 ABS	\checkmark	\checkmark	⊡_ph	
				⊡1ph	
	I1-3_harmonic_1-63_φ Flickers			штрп	
	Thekers				Instantaneous flicker sensation measured with 150
	Pi ₁₋₃			⊠1ph	samples / sec (original sampling is 1200 smpl/sec)
	Pst ₁₋₃	\checkmark		⊡1ph	10 min statistical evaluation (128 classes of CPF)
	Plt ₁₋₃			⊠1ph	derived from 12 Pst acc. to EN 61000-4-15
	Miscellaneous	<u>ت</u>		штрп	
		\checkmark	\checkmark	1nh	
	K-factor ₁₋₃			⊠1ph	
	Current Crest factor I ₁₋₃		V	⊠1ph	
ase to phase	Voltage				
easurements	Upp _{1-3_RMS}				
	Upp _{AVG_RMS}				
	THD-Upp ₁₋₃				
	Upp _{1-3_harmonic_1-63_%}				% of RMS or % of base
	Upp _{1-3_harmonic_1-63_ABS}				
	Upp _{1-3_harmonic_1-63_φ}	\checkmark	\checkmark		
	U _{underdeviation}	\checkmark	\checkmark	⊡1ph	U _{under.} and U _{over.} are calculated for phase or phase-to
					phase voltages regarding connection mode.
	Uoverdeviation		\checkmark	⊠1ph	phase voltages regarding connection mode.

Derived For more information see MC774 Quality Analyser User's manual

Meas. type	Measurement	3-phase 4-wire	3-phase 3-wire	1-phase	comments
	Flickers				
	Pi_pp ₁₋₃				
	Pst_pp ₁₋₃		\checkmark		Phase-to-phase flickers
	Plt_pp ₁₋₃		\checkmark		
Metering	Energy	\checkmark	\checkmark	\checkmark	
	Counter E ₁₋₈	\checkmark	\checkmark	\checkmark	each counter can be dedicated to any of four
	E_TOT_1-8			V	quadrants (P-Q, import-export, L-C). Total energ is a sum of one counter for all tariffs. Tariffs can
	Active tariff				be fixed, date/time dependent or tariff input dependent
Auxiliary	Aux. line				
channel	UNEUTRAL-EARTH				aux. voltage is dedicated for neutral-earth meas only
measurements	I _{NEUTRAL} meas	$\overline{\checkmark}$		\checkmark	measured neutral current with 4th current input
		\checkmark		\checkmark	calculated neutral current
					error neutral current (difference between measured and calculated)
Maximum	Maximum demand				
demand	MD_I ₁₋₃	\checkmark	\checkmark	⊡ 1ph	
measurements	MD_P _{import}	\checkmark	\checkmark	\checkmark	
	MD_P _{export}	\checkmark	\checkmark	\checkmark	
	MD_Q _{ind}	\checkmark	\checkmark	\checkmark	
	MD_Q _{cap}	\checkmark	\checkmark	\checkmark	
	MD_S	\checkmark	\checkmark	\checkmark	
Min and max	Min and max				
measurements	U _{1-3_RMS_MIN}	\checkmark		☑ 1ph	
	U _{1-3_RMS_MAX}	\checkmark		⊡ 1ph	
	Upp _{1-3_RMS_MIN}	\checkmark	\checkmark		
	Upp _{1-3 RMS MAX}	\checkmark	\checkmark	\checkmark	
	I _{1-3_RMS_MIN}	\checkmark	\checkmark	☑ 1ph	
	I _{1-3_RMS_MAX}	\checkmark	\checkmark	⊡1ph	
	P _{1-3_RMS_MIN}	\checkmark		⊡1ph	
	P _{1-3_RMS_MAX}	\checkmark		⊡1ph	
	P _{TOT_RMS_MIN}	\checkmark	\checkmark	⊡1ph	
	P _{TOT_RMS_MAX}	\checkmark	\checkmark	⊡1ph	
	S _{1-3_RMS_MIN}	\checkmark		⊡1ph	
	S _{1-3_RMS_MAX}	\checkmark		⊠1ph	
	Stot_rms_min	\checkmark	\checkmark	⊡1ph	
	S _{TOT_RMS_MAX}	\checkmark	\checkmark	⊠1ph	
	freq _{MIN}	\checkmark			
	freq _{MAX}	\checkmark	\checkmark	\checkmark	
Other	Miscellaneous				
measurements	freqMEAN	\checkmark	\checkmark	\checkmark	
	Internal temp.	\checkmark	\checkmark	\checkmark	
	Date, Time	\checkmark	\checkmark	\checkmark	
	Last Sync. time				UTC
	GPS Time				
	GPS Longitude				If GPS receiver is connected to dedicated RTC
	GPS Latitude				time synchronization input
	GPS Altitude	Z	⊠ ₽		, p

Generation See MC774 Quality Analyser User's manual

Table 3 Selection of available measurement quantities

RECORDER

∞ Iskra[®]

A built-in recorder (8Mb) enables storing measurements, detected alarms and PQ reports with details. It supports recording of all measured quantities including voltage and current harmonics up tp 65th in 4 configurable partitions. For each partition is possible to set storage interval and other recording parameters.

Fifth partition is used for recording alarms. Each alarm triggered by preset limit lines is stored in a form of alarm i.d. and its timestamp.

Sixth partition is used for PQ reports. Each report in recorder is identified by a monitoring interval (date).

Last partition is used for PQ report details. They represent time stamped PQ values that are outside PQ limit lines.

Content of recorder can be viewed with monitoring software *MiQen* in a detailed tabelaric or visually favoured graphical form.

Memory card

MC774 Power Quality Analyzer & Recorder is equipped with a front panel slot for full sized SD memory card that supports capacity up to 2 GB. It is intended for downloading internally stored data, uploading setting file and performing firmware upgrade.

ALARMS

Alarms are powerful tool for **MC774** Quality Analyser control and supervision features. Devices' performance can with this features reach beyond measuring and analyzing power network.

MC774 Quality Analyser supports recording and storing of 32 alarms in four groups. A time constant of maximal values in a thermal mode, a delay time and switch-off hysteresis are defined for each group of alarms.

For each parameter is possible to set limit value, condition and alarm activation action (sound signal and/or digital output switch if available).

All alarms are also stored in internal memory for postanalysis.

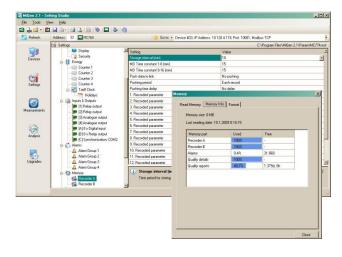


Figure 6: Setting recorder parameters and viewing memory consumption information

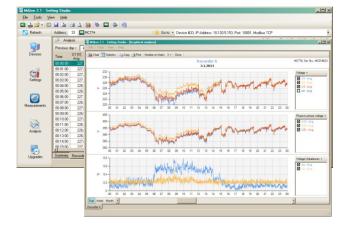


Figure 7 Viewing recorder content in tabelaric and graphical form

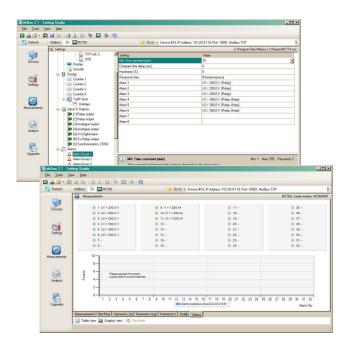


Figure 8 Setting and viewing alarms

REAL TIME SYNCHRONISATION

Synchronized real-time clock (RTC) is an essential part of any Class A analyzer for proper chronological determination of various events. Without RTC synchronization MC774 acts as a Class S device.

To distinct cause from consequence, to follow a certain event from its origin to manifestation in other parameters it is very important that each and every event and recorded measurement on one instrument can be compared with events and measurements on other devices. Even if instruments are dislocated, which is normally the case in electro distribution network events have to be timecomparable with accuracy better than a single period.

For this purpose instruments normally support highly accurate internal RTC. Still this is not enough, since temperature is location dependant and it influences its precision. For that reason it is required to implement periodical RTC synchronization.

MC774 Quality Analyzer supports three types of RTC synchronization.

GPS time synchronization:

1pps and serial RS232 communication with NMEA 0183 sentence support.

GPS interface is designed as 5 pole plugable terminal (+5V for receiver supply, 1pps input and standard RS232 communication interface).

Proposed GPS receiver is GARMIN GPS18x.

IRIG time code B (IRIG-B):

Unmodulated (DC 5V level shift) and modulated (1 kHz) serial coded format with support for 1pps, day of year, current year and straight seconds of day as described in standard IRIG-200-04. Supported serial time code formats are IRIG-B007 and IRIG-B127.

Interface for modulated IRIG-B is designed as BNC-F terminal with 600 I input impedance. Interface for unmodulated IRIG-B is designed as pluggable terminal.

Network time protocol (NTP):

Synchronization via Ethernet requires access to a NTP server.

NOTE!

NTP can usually maintain time to within tens of milliseconds over the public Internet, but the accuracy depends on infrastructure properties - asymmetry in outgoing and incoming communication delay affects systematic bias. It is recommended that dedicated network rather than public network is used for synchronisation purposes.

COMMUNICATION

MC774 Quality Analyzer has a wide variety of communication possibilities to suit specific demands. It is equipped with standard communication port COM1 and auxiliary communication port COM2. This allows two different users to access data from a device simultaneously and by using TCP/IP communication, data can be accessed worldwide.

COM2 port is always present as a part of synchronization module C. It is available as a general purpose communication port when it is not used for time synchronization purposes.

Different configurations are possible (to be specified with an order).

Configuration	COM1	COM2 ⁽²⁾
1	RS232/485	/
2	RS232/485	RS232/485
3	USB	/
4	USB	RS232/485
5 ⁽¹⁾	Ethernet & USB	/
6 ⁽¹⁾	Ethernet & USB	RS232/485

⁽¹⁾ Galvanic separation between Eth. and USB is 1 kV_{ACRMS}

⁽²⁾ COM2 is NOT available if GPS time synchronization is used

Table 3: List of communication configurations

MC774 Quality Analyser supports standard communication protocols MODBUS RTU, TCP and DNP3 L1.

Additionally it supports proprietary PUSH communication mode, which is used in system applications where devices send predefined readings in predefined time intervals in XML format. Web based software MiSMART collects data and stores it into database. Stored data can then be viewed with MiSMART client software.

For more information about PUSH communication mode and XML format see MC774 Quality Analyser User's manual GP K 22.444.053.

TECHNICAL DATA

Measurement inputs

measurement inputs	
Nominal frequency range	50, 60 Hz
Measuring frequency range	16–400 Hz
Voltage measurements:	
Number of channels	4 (1)
Sampling rate	31 kHz
Min. voltage for sync.	1 V _{rms}
Nominal value (U_N)	500 V_{LN} , 866 V_{LL}
Max. measured value (cont.)	600 V_{LN} ; 1000 V_{LL}
Max. allowed value	$1.2 \times U_N$ permanently
	$2 \times U_N$; 10 s
Consumption	$< U^2 / 4.2 M\Omega$ per phase
Input impedance	$4.2M\Omega$ per phase

 $^{(1)}$ 4 $^{\rm th}$ channel is used for measuring U $_{\rm EARTH-NEUTRAL}$

Current measurements:

Number of channels	4
Sampling rate	31 kHz
Nominal value (I _{NOM})	1 A, 5 A
Max. measured value (I_1 - I_3 only)	12.5 A sin.
Max. allowed value (thermal)	15 A cont.
	≤ 300 A; 1s
Consumption	$< I^2 \times 0.01\Omega$ per phase

System:

Voltage inputs can be connected either directly to low-voltage network or via a VT to higher voltage network.

Current inputs can be connected either directly to low-voltage network or shall be connected to network via a corresponding CT (with standard 1 A or 5 A outputs).

For more information about different system connections see CONNECTION on page **Napaka! Zaznamek ni definiran.**.

Basic accuracy under reference conditions

Accuracy is presented as percentage of reading of the measurand except when it is stated as an absolute value.

Measurand	Accuracy	
Voltage L-N, L-L	±0.1%	acc. to EN 61557-12
Current	± 0.1%	acc. to EN 61557-12
Active power ($I_N = 5A$)	± 0.2%	acc. to EN 61557-12
Active power ($I_N = 1A$)	± 0.5%	acc. to EN 61557-12
Active energy	Cl. 0.2S	acc. to EN 62053-22
Reactive energy	Cl.2	acc. to EN 62053-23
Frequency (f)	± 0.01Hz	acc. to EN 61557-12
Power factor (PF)	± 0.5%	acc. to EN 61557-12
THD (U)	± 0.3%	acc. to EN 61557-12
THD (I)	± 0.3%	acc. to EN 61557-12
Real time clock (RTC)	< ± 1s / day	acc. to IEC61000-4- 30

All values required for PQ analysis, which should be measured according to IEC61000-4-30 correspond to Class A accuracy.

For complete overview of accuracy for all measured parameters and measuring ranges see Users' manual (doc. no. *GB K 22.444.053*) on page 143.

INPUT / OUTPUT modules

MC774 Quality Analyser is equipped with two main I/O slots, two auxiliary I/O slots and special time-synchronisation module. The following I/O modules are available:

Module type	Number of modules per slot	
	Main slot	Aux slot
Analogue output (AO)	2	/
Analogue input (AI)	2	/
Digital output (DO)	2	8
Digital input (DI)	2	8
Bistable Digital output (BO)	1	/
Status output (WO)	1 + 1xDO	/

Table 4: List of available I/O modules

Analogue input (AI):

Three types of analogue inputs are suitable for acquisition of low voltage DC signals from different sensors. According to application requirements it is possible to choose current, voltage or resistance (temperature) analogue input. They all use the same output terminals.

MiQen software allows setting an appropriate calculation factor, exponent and required unit for representation of primary measured value (temperature, pressure, wind speed ...).

DC current input:

Nominal input range	–20020 mA (±20%)
input resistance	20 Ω
accuracy	0.5 % of range
temperature drift	0.01% / °C
conversion resolution	16 bit (sigma-delta)
Analogue input mode	internally referenced Single- ended

DC voltage input:

Nominal input range	-10010 V (±20%)
input resistance	100 kΩ
accuracy	0.5 % of range
temperature drift	0.01% / °C
conversion resolution	16 bit (sigma-delta)
Analogue input mode	internally referenced Single- ended

Resistance (temperature) input:

Nominal input range (low)*	0 - 200 Ω (max. 400 Ω)
	PT100 (-200°C–850°C)
Nominal input range (high)*	0 – 2 kΩ (max. 4 kΩ)
	PT1000 (-200°C–850°C)
connection	2-wire
accuracy	0.5 % of range
conversion resolution	16 bit (sigma-delta)
Analogue input mode	internally referenced Single- ended

* Low or high input range and primary input value (resistance or temperature) are set by the MiQen setting software

Analogue output (AO):	
Output range	020 mA
Accuracy	0.5% of range
Max. burden	150 Ω
Linearization	Linear, Quadratic
No. of break points	5
Output value limits	\pm 120% of nominal output
Response time	depends on set general average
(measurement and	interval
analogue output)	(0.1s – 5s)
Residual ripple	< 1 % p.p.

Outputs may be either short or open-circuited. They are electrically insulated from each other and from all other circuits. Output range values can be altered subsequently (zoom scale) using the setting software, but a supplementary error results.

Digital input (DI)	
Purpose	Tariff input, Pulse input, General purpose digital input
Max. current	8 mA (48V), <0.6mA (110, 230V)
SET voltage	40120 % of rated voltage
RESET voltage	010 % of rated voltage
Tariff input	Main slot only
Rated voltage	(548), 110, 230 ± 20% V _{AC/DC}
Frequency range	4565 Hz
Pulse input	Main slot only
Rated voltage	5 - 48V _{DC}
Min. pulse width	0.5 ms
Min. pulse period	2 ms
Digital input	(548), 110, 230 ± 20% V _{AC/DC}
Min. signal width	20 ms
Min. pause width	40 ms
Digital output (DO, BO)	
Туре	Relay switch
Purpose	Alarm output, General purpose digital output
Rated voltage	230 V _{AC/DC} ± 20% max
Max. switching current	1000 mA (main slot)
	100 mA (aux. slot, DO only)
Contact resistance	≤ 100 mΩ (100 mA, 24V)
Impulse	Max. 4000 imp/hour
	Min. length 100 ms
Туре	Optocoupler open collector switch
	(main slot only)
Purpose	Pulse output
Rated voltage	40 V _{AC/DC}
Max. switching current	$30 \text{ mA} (R_{ONmax} = 8\Omega)$
	11 /2 222

Pulse length

programmable (2 ... 999 ms)

lskra°

K55 temperature class Acc. to EN61557-12

Status (watchdog) output (WO)

GPS or IRIG-B TTL
TTL level (+5V)
RS232 (GPS)
DC level shif (IRIG-B)
IRIG-B AM modulated
1 kHz
600 Ohms
2.5V _{P-Pmin} , 8V _{P-Pmax}
3:1 – 6:1
CAT III 300V
80 276 V
40 65 Hz
70 300 V
< 8VA
< 20 A ; 1 ms
CAT III 300V
48 77 V
40 65 Hz
19 70 V
< 8VA

Safety:

Protection:

	Voltage inputs via high impedance
	Double insulation for I/O ports and COM ports
Pollution degree	2
Installation category	CAT II ; 600 V
(measuring inputs)	CAT III ; 300 V
	Acc. to EN 61010-1
Test voltages	U _{AUX} ↔I/O, COM1: 3510 VAC _{rms}
	U _{AUX} ↔U, I inputs: 3510 VAC _{rms}
	U, I inputs↔I/O, COM1: 3510 VAC _{rms}
	HV I/O ↔ I/O, COM1: 3510 VAC _{rms}
	U inputs↔I inputs: 3510 VAC _{rms}

Mechanical

Dimensions	144 × 144 ×100 mm
Mounting	Panel mounting 144×144 mm
Required mounting hole	137 × 137 mm
Enclosure material	PC/ABS
Flammability	Acc. to UL 94 V-0
Weight	550 g
Enclosure material	PC/ABS
	Acc. to UL 94 V-0

Ambient conditions:

Ambient temperature

	-1055 °C
Storage temperature	-40 to +70 °C
Average annual humidity	\leq 90% r.h. (no condensation)
Pollution degree	2
Enclosure protection	IP 40 (front plate)
	IP 20 (rear side)
Installation altitude	≤ 2000 m

Real time clock

A built-in real time clock is also without external synchronization very stable when device is connected to auxiliary power supply. For handling shorter power interruptions without influence on RTC, device uses high capacity capacitor. It ensures auxiliary supply (for internal RTC only) for more than two days of operation.

Туре	Low power embedded RTC
RTC stability	< 1 sec / day

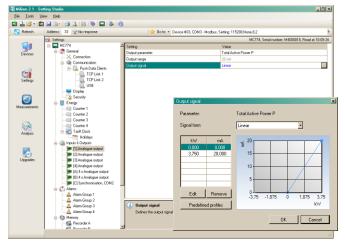
Connection cables

MC774 Quality Analyser is equipped with European style pluggable terminals for measuring voltages, auxiliary supply, communication and I/O modules. Measuring current cables shall be attached as through-hole connection without screwing.

NOTE!

protection class II

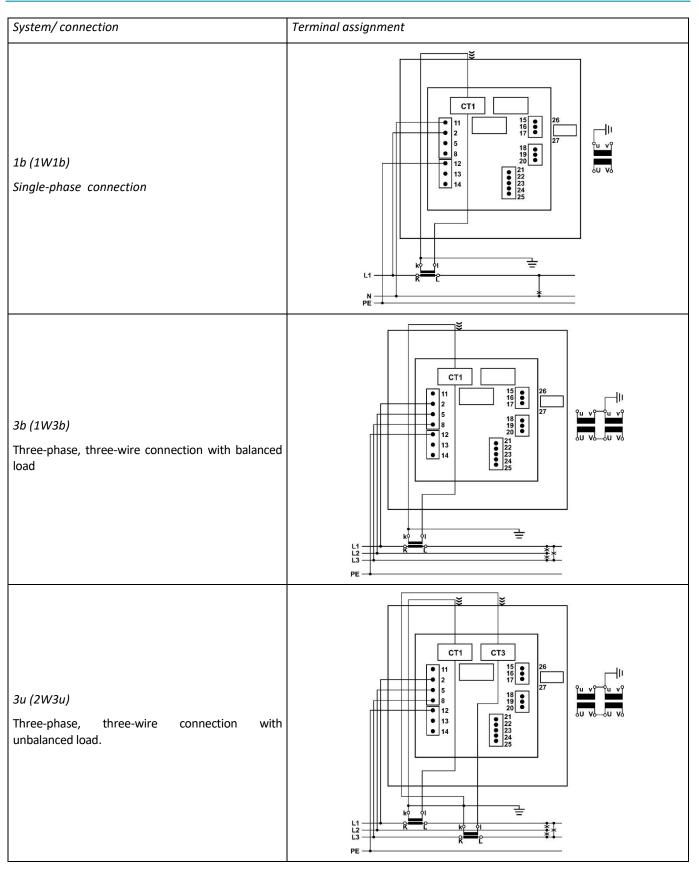
functional earth terminal must be connected to earth potential!


Stranded wire must be used with insulated end sleeve to assure firm connection.

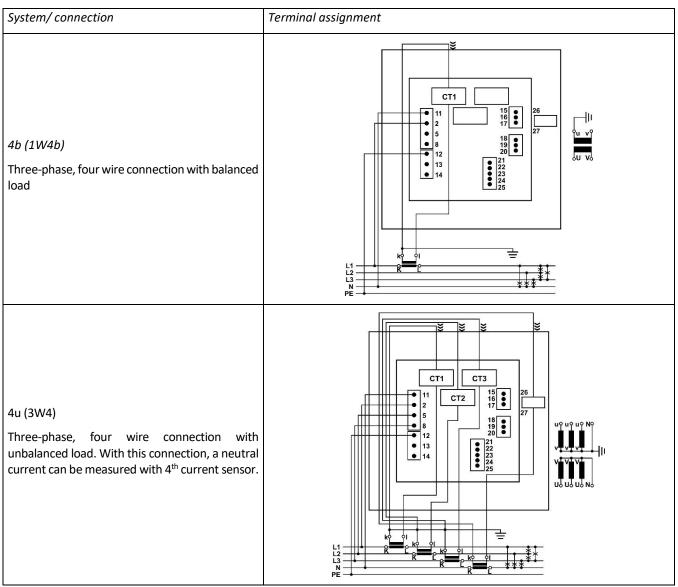
Voltage inputs (4)	\leq 2.5 mm^2 , AWG 24-12 single wire
Current inputs (3)	\leq Ø 6 mm one conductor with insulation
Supply (3)	\leq 2.5 mm^2 , AWG 24-12 single wire
Com (5), I/O (6)	\leq 2.5 mm^2 , AWG 24-12 single wire

MiQen - setting and acquisition Software

MiQen software is intended for supervision of **MC774** and many other instruments on a PC. Network and the device setting, display of measured and stored values and analysis of stored data in the device are possible via the serial, Ethernet or USB communication. The information and stored measurements can be exported in standard Windows formats. Multilingual software functions on Windows XP, W7 operating systems.

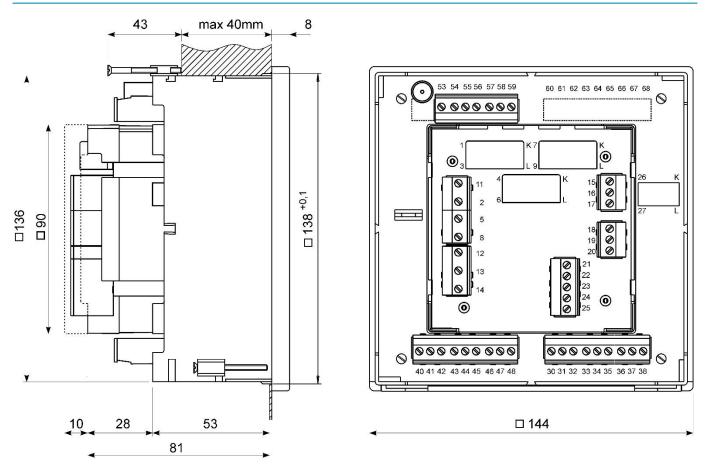

MiQen setting and acquisition software

MiQen software is intended for:


- Setting all of the instruments parameters (online and offline).
- Viewing current measured readings and stored data.
- Setting and resetting energy counters.
- Complete I/O modules configuration.
- Evaluation of the electricity supply quality in compliance with SIST EN 50160.
- Viewing and exporting time-stamped PQ anomaly details.
- Upgrading instruments firmware.
- Searching the net for devices.
- Virtual interactive instrument.
- Comprehensive help support.

CONNECTION

Iskra


NOTE!

With all connection schemes must be terminal 12 (PE) ALWAYS connected.

Fourth voltage channel is dedicated for measuring voltage between EARTH (PE, terminal 12) and NEUTRAL (N, terminal 2).

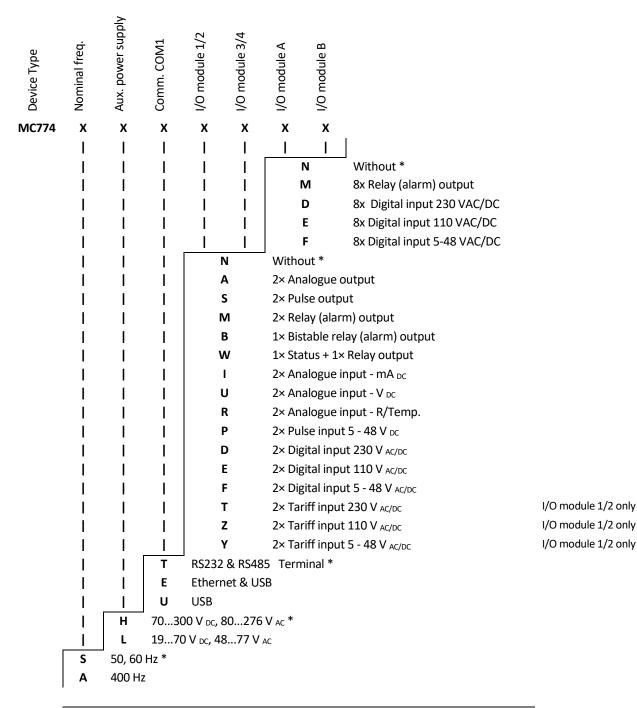
DIMENSIONAL DRAWING

lskra°

Connection table

Function		Connection	Comment	
		IL1	1/3	
	AC current	IL2	4/6	CAT II 600V
		IL3	7/9	CAT III 300V
Measuring		ILN	26/27	-
input:		UL1	2	
	AC voltage	UL2	5	
	AC VOILage	UL3	8	CAT III 300V
		UN	11	
		⊖+	15	
	Module 1/2	⊖ >− (common)	16	
		⊖ *+	17	
Inputs / outputs:	Module 3/4	⊖ *+	18	
		⊖>- (common)	19	
		⊖ ≯+	20	
	Module A	0>	30-38	
	Module B	0>	40-48	
	Module C	0>	52-58	
Auxiliary power supply:		+ / AC (L)	13	CAT III 300V
		-/ AC (N)	14	
		GROUND	12	GROUND terminal must be always connected !!
Communication: _	RS485	A	21	RS232 and RS485 are both supported, but only
		В	22	one at the time can be used!
	RS232	RX	23	In case of Ethernet / USB communication,
		GND	24	terminals from 21 to 25 are not used
		ТХ	25	(unconnected).

Table 4: Connections

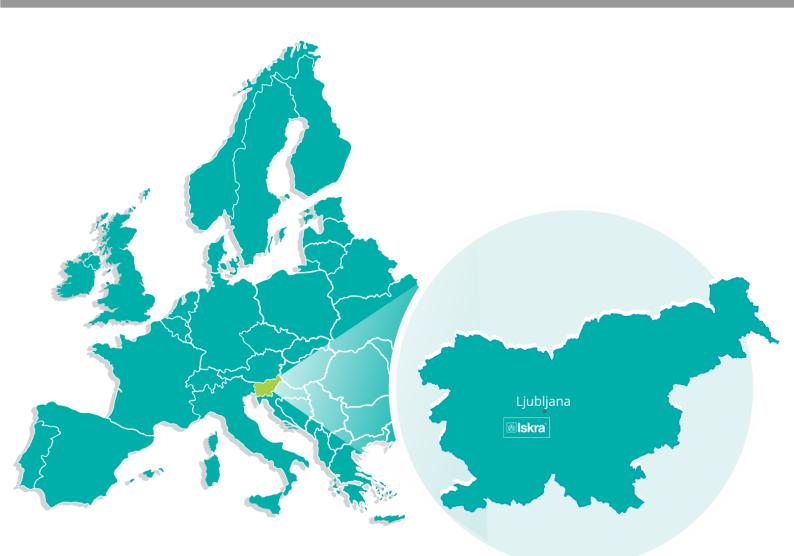

DATA FOR ORDERING

® Iskra

When ordering **MC774** Quality Analyser, all required specifications shall be stated in compliance with the ordering code. Additional information could be stated. Note that fixed or programmable specifications are not part of ordering code.

General ordering code

The following specifications shall be stated:



*- standard

Dictionary: PQ

PQ	Power Quality alias Voltage Quality
RMS	Root Mean Square
PA	Power angle (between current and voltage)
PF	Power factor
VT	Voltage measuring transformer
СТ	Current measuring transformer
THD	Total harmonic distortion
Ethernet	IEEE 802.3 data layer protocol
MODBUS / DNP3	Industrial protocol for data transmission
MiQen	ISKRA setting and acquisition Software
AC	Alternating quantity
RTC	Real Time Clock
IRIG	Inter-range instrumentation group time codes
NTP	Network Time Protocol

PE Ljubljana Stegne 21 SI-1000 , Ljubljana Phone: + 386 1 513 10 00

Iskra IP, d.o.o. Metliška cesta 8 SI-8333 , Semič Phone: +386 7 384 94 54

Iskra Sistemi - M dooel Ul, Dame Gruev br. 16/5 kat 1000 , Skopje Phone: +389 75 444 498

PE Kondenzatorji Vajdova ulica 71 SI-8333 , Semič Phone: +386 7 38 49 200

lskra Lotrič, d.o.o. Otoče 5a SI-4244 , Podnart Phone: +386 4 535 91 68

Iskra Commerce, d.o.o. Hadži Nikole Živkoviča br. 2 11000, Beograd Phone: +381 11 328 10 41

PE MIS Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12

Iskra ODM, d.o.o. Otoče 5a 4244 , Podnart Phone: +386 4 237 21 96

Iskra Hong Kong Ltd. 33 Canton Road, T.S.T. 1705, China HK City Phone: +852 273 00 917 +852 273 01 020 PE Baterije in potenciometri Šentvid pri Stični 108 SI-1296, Šentvid pri Stični Phone: +386 1 780 08 00

Iskra STIK, d.o.o. Ljubljanska cesta 24a SI-4000 , Kranj Phone: +386 4 237 22 33 PE Galvanotehnika Glinek 5 SI-1291, Škofljica Phone: +386 1 366 80 50

Iskra Tela L, d.o.o. Omladinska 66 78250 , Laktaši Phone: +387 51 535 890

