ENERGY SECTOR

MULTIFUNCTION METER MC 740

- Measurements of instantaneous values of more than **140 quantities**.
- **Class S** measuring accuracy according to EN 61000-4-30. Voltage and current auto range measurements up to 1000 V_{RMS} , 12.5 A.
- Wide frequency measurement range 16 Hz 400 Hz. Up to three independent communication ports. Support for NTP real time synchronisation.

- Up to 4 inputs/outputs.

FEATURES

- Evaluation of the electricity supply quality in compliance with EN 50160 with automatic report generation.
- Measurements of instantaneous values of more than 140 quantities including harmonics, flicker, power line signalling voltage, unbalance, etc...
- Class S (0.2%) accuracy in compliance with EN 61000-4-30.
- Four quadrant energy measurement with class 0.5 S or 0.2 S for active energy (8 programmable energy counters, up to four tariffs, tariff clock, etc.).
- \circ Automatic range selection of 3 current and 4 voltage channels (max. 12.5 A and 1000 $V_{\text{RMS}})$ with 32 kHz sampling rate.
- Measurements of 40 minimal and maximal values in different time intervals (from 1 period to 256 periods).
- o Frequency range from 16 Hz to 400 Hz.
- Up to three independent communication ports (RS232 or RS485 up to 115,200 bit/s, Ethernet and USB 2.0).
- o MODBUS and DNP3 communication protocols.
- o Support for NTP real time synchronisation.
- Up to 4 inputs and outputs (analogue inputs/outputs, digital inputs/outputs, alarm/watchdog outputs, pulse input/outputs, tariff inputs).
- Multilingual support.
- Universal power supply.
- 96 mm square panel mounting.
- User-friendly setting and evaluation software, MiQen.
- \circ Extension unit with four configurable analogue outputs EX104 (0.4 mA_{DC} ... 20 mA_{DC}, 0 V_{DC} ... 10 V_{DC}).

DESCRIPTION

MC 740 Multifunction Meter is an important device for permanent monitoring measuring and analysing single-phase or three-phase electrical power network.

The meter measures RMS value according to the principle of fast sampling of voltage and current signals. A built-in microprocessor calculates measurands (voltage, current, frequency, energy, power, power factor, THD phase angles, etc.) from the measured signals.

MC 740 performs measurements in compliance with regulatory requested standard EN 61000-4-30.

With the RS232/RS485 or Ethernet/USB communication the meter can be set, and measurements checked.

APPLICATION AND BENEFITS

MC 740 Multifunction Meter is intended for monitoring and measuring of electrical quantities of a three-phase electric-energy distribution system.

Identifying relevant fixed measuring points is the most important task prior to complete system installation. This system itself will not prevent disturbances in network but will help diagnose their origin and effects. This is possible only with a system approach by using time synchronized meters with wide range of measuring parameters.

COMPLIANCE WITH STANDARDS

MC 740 Multifunction Meter follows required procedures and meets the precision requirements for class S measuring device as described in standard IEC EN 61000-4-30.

Standard EN	Description
61010-1: 2010	Safety requirements for electrical equipment for measurement, control and laboratory use.
61557-12:2018	Electrical safety in LV distribution systems up to 1 kV a.c. and 1.5 kV d.c. – Combined performance measuring and monitoring devices for electrical parameters.
61000-4-30:2009	Electromagnetic compatibility (EMC) – Power quality measurements methods.
61000-4-7:2002 + A1:2009	Electromagnetic compatibility (EMC) – General guide on harmonics and interharmonics measurements.
50160:2011	Voltage characteristics of electricity supplied by public distribution networks.
62053-22:2003	Electricity metering equipment - Static meters for active energy (classes 0.2 S and 0.5 S).
62053-24:2014	Electricity metering equipment – Static meters for reactive energy at fundamental frequency (classes 0,5 S, 1 S and 1)
62053-23:2003	Electricity metering equipment -Static meters for reactive energy (classes 2 and 3).
61326-1:2006	EMC requirements for electrical equipment for measurement, control and laboratory use.
60529:1997/A1:2000	Degrees of protection provided by enclosures (IP code).
60068-2-1/-2/-6/-27/-30	Environmental testing (-1 Cold, -2 Dry heat, -30 Damp heat, -6 Vibration, -27 Shock).
UL 94	Tests for flammability of plastic materials for parts in devices and appliances.

Table 1: List of applicable standards

MEASUREMENTS

ONLINE MEASUREMENTS

NOTE!

In MiQen settings, software device will represent itself as MC 740A.

Online measurements are available on display or can be monitored with setting and monitoring software **MiQen**.

Readings on display are performed continuously with refresh time dependent on set average interval whereas rate of readings monitored with *MiQen* is fixed and refreshed approx. each second.

For better overview over numerous readings, they are divided into several groups, which contain basic measurements, min. and max. values, harmonics and alarms.

Each group can represent data in visually favored graphical form or detailed tabular form. Latter allows freezing readings and/or copying data into various report generation software tools.

INTERACTIVE INSTRUMENT

Additional communication feature of a device allows interactive handling with a dislocated device as if it would be operational in front of user.

This feature is useful for presentations or product training.

SELECTION OF AVAILABLE QUANTITIES

Available online measuring quantities and their appearance can vary according to set type of power network and other settings such as average interval, max. demand mode, reactive power calculation method ...

Complete selection of available online measuring quantities is shown in a table on the next page.

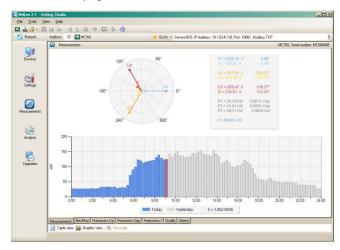


Figure 3: The sample of online measurements in graphical form – phase diagram and daily total active power consumption histogram

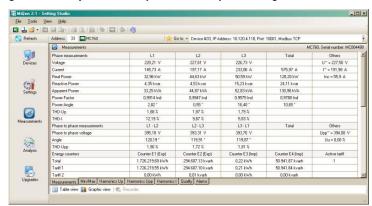


Figure 4: The sample of online measurements in tabular form

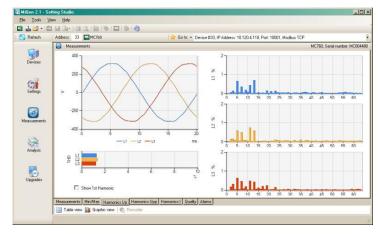


Figure 5: The sample of online harmonic measurements in graphical form

Meas. type	Measurement	3-phase 4-wire	3-phase 3-wire	1-phase	comments
Phase	Voltage				
neasurements	U _{1-3_RMS}	$\overline{\checkmark}$		☑ 1ph	
	U _{AVG_RMS}	$\overline{\checkmark}$		$\overline{\checkmark}$	
	U _{1-3_DC}	V		☑ 1ph	DC component of phase voltages
	Current				
	I _{1-3_RMS}	V	V	 ☑ 1ph	
	I _{TOT_RMS}	$\overline{\checkmark}$	V	V	
	I _{AVG_RMS}	$\overline{\checkmark}$	$\overline{\checkmark}$	V	
	I _{NEUTRAL_calc}	$\overline{\checkmark}$	V	V	Calculated neutral current
	Power				
	P _{1-3_RMS}	V		 ☑ 1ph	
	P _{TOT_RMS}	V	V	√	
	Q _{1-3_RMS}	 ☑		 □1ph □	Reactive power can be calculated as a squared
	Q _{TOT_RMS}	V	√	\checkmark	difference between S and P or as delayed sample
	S _{1-3_RMS}	V		 ☑ 1ph	
	S _{TOT_RMS}	V	V	$\overline{\checkmark}$	
	Q _{fund1-3_RMS}	V		 ☑ 1ph 	- , , , , , , , , , , , , , , , , , , ,
	Q _{fundTOT_RMS}	√	√	✓	Fundamental reactive power of first harmonics
	PF ₁₋₃	$\overline{\checkmark}$		 ☑ 1ph	
	PF _{TOT}	$\overline{\checkmark}$	V	√	
	φ ₁₋₃	\checkmark		 ☑ 1ph	PA – Power angle
	Harmonic analysis				
	THD-U ₁₋₃	V		 ☑ 1ph	
	THD-I ₁₋₃	$\overline{\checkmark}$	V	 ☑ 1ph	
	TDD-I ₁₋₃	$\overline{\checkmark}$	$\overline{\checkmark}$	 ☑ 1ph	
	U _{1-3_harmonic_1-63_%}	 ✓		☑ 1ph 	% of RMS or % of base
	U _{1-3_harmonic_1-63_ABS}	✓		 ☑1ph	
	U _{1-3_harmonic_1-63_} φ	V		 ☑1ph	
	U _{1-3_signaling_ABS}	√		 ☑1ph	
	1-3_signallig_AB3	V	V	 ☑1phጨ	% of RMS or % of base
	I _{1-3_harmonic_1-63_ABS}	√	✓	 ☑ 1ph	
	I _{1-3_harmonic_1-63_} Φ	V	✓	 1 ph	
hase to phase	Voltage			•	
neasurements	Upp _{1-3_RMS}	√	√		
	Upp _{AVG_RMS}	▽	✓		
	φ _{x-y}	<u> </u>	<u> </u>		Phase-to-phase angle
	Harmonic analysis				,
	THD-Upp ₁₋₃	$\overline{\checkmark}$	$\overline{\checkmark}$		
	Upp _{1-3_harmonic_1-63_%}				% of RMS or % of base
			✓		70 of fillio of 70 of busic
	Upp _{1-3_harmonic_1-63_ABS} Upp _{1-3_harmonic_1-63_} φ		✓		

Meas. type	Measurement	3-phase 4- wire	3-phase 3- wire	1-phase	comments
Metering	Energy				
	Counter E ₁₋₈	V	√	V	Each counter can be dedicated to any of four
	E_ _{TOT_1-8}	V	√	V	quadrants (P-Q, import-export, L-C). Total energy is
	Active tariff	V	V	V	a sum of one counter for all tariffs. Tariffs can be fixed, date/time dependent or tariff input dependent
	Cost_by_meters ₁₋₄	$\overline{\checkmark}$	V	\checkmark	Calculated costs depend on specified price per hour
	Cost _{1-4_TOT}	\checkmark	V	V	and currency
Maximum	Maximum demand				
demand	MD_I ₁₋₃	✓	$\overline{\checkmark}$	☑ 1ph	
measurements	MD_P _{import}	$\overline{\checkmark}$	✓	$\overline{\checkmark}$	
	MD_P _{export}	√	✓	V	
	MD_Q _{ind}	√	✓	V	
	MD_Q _{cap}	$\overline{\checkmark}$	\checkmark	V	
	MD_S	$\overline{\checkmark}$	V	V	
Min and max	Min and max				
measurements	U _{1-3_RMS_MIN}	$\overline{\checkmark}$		 ☑ 1ph	
	U _{1-3_RMS_MAX}	$\overline{\checkmark}$		 ☑ 1ph	
	Upp _{1-3_RMS_MIN}	$\overline{\checkmark}$	V	V	
	Upp _{1-3_RMS_MAX}	$\overline{\checkmark}$	V	V	
	I _{1-3_RMS_MIN}	√	✓	☑ 1ph	
	I _{1-3_RMS_MAX}	\checkmark	✓	 1ph	
	P _{1-3_RMS_MIN}	$\overline{\checkmark}$		 1ph	
	P _{1-3_RMS_MAX}	$\overline{\checkmark}$		 1ph	
	P _{TOT_RMS_MIN}	\checkmark	✓	 1ph	
	P _{TOT_RMS_MAX}	\checkmark	✓	 1ph	
	S _{1-3_RMS_MIN}	\checkmark		 1ph	
	S _{1-3_RMS_MAX}	$\overline{\checkmark}$		 1ph	
	S _{TOT_RMS_MIN}	✓	$\overline{\checkmark}$	☑ 1ph	
	S _{TOT_RMS_MAX}	\checkmark	✓	☑ 1ph	
	freq _{MIN}	\checkmark	✓	✓	
	freq _{MAX}	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	
Other	Miscellaneous				
measurements	freq _{MEAN}	V	\checkmark	$\overline{\checkmark}$	
	Internal temp.	✓	\checkmark	✓	
	Date, Time	$\overline{\checkmark}$	V	√	
	Last Sync. time	V	V	 ✓	UTC

☐ For more information see *MC 7×0A Power Monitoring Device* User's manual

Table 3: Selection of available measurement quantities

DESCRIPTION OF PROPERTIES

Memory card

MC 740 Multifunction Meter is equipped with a front panel slot for full sized SD memory card that supports capacity up to 2 GB. It is intended for setting file and performing firmware upgrade.

Alarms

Alarms are powerful tool for *MC 740 Multifunction Meter* control and supervision features. Devices' performance can with this features reach beyond measuring and analyzing power network.

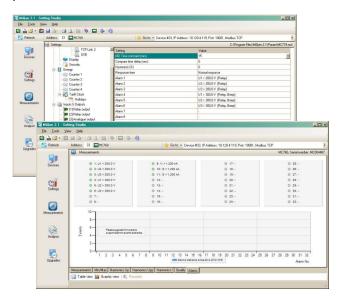


Figure 6: The sample of setting and viewing alarms

REAL TIME SYNCHRONISATION

Synchronized real-time clock (RTC) is an essential part of any Class A analyzer for proper chronological determination of various events.

To distinct cause from consequence, to follow a certain event from its origin to manifestation in other parameters it is very important that each and every event and recorded measurement on one instrument can be compared with events and measurements on other devices. Even if instruments are dislocated, which is normally the case in electro distribution network events must be time-comparable with accuracy better than a single period.

For this purpose, instruments normally support highly accurate internal RTC. Still this is not enough, since temperature is location dependant and it influences its precision. For that reason, it is required to implement periodical RTC synchronization.

MC 740 Multifunction Meter supports Network time protocol synchronization (NTP).

Network time protocol (NTP):

Synchronization via Ethernet requires access to an NTP server.

NOTE: NTP can usually maintain time to within tens of milliseconds over the public Internet, but the accuracy depends on infrastructure properties - asymmetry in outgoing and incoming communication delay affects systematic bias. It is recommended that dedicated network rather than public network is used for synchronisation purposes.

COMMUNICATION

MC 740 Multifunction Meter has a wide variety of communication possibilities to suit specific demands. It is equipped with standard communication port COM1 and auxiliary communication port COM2. This allows two different users to access data from a device simultaneously and by using TCP/IP communication, data can be accessed worldwide.

COM2 port is optional and can be ordered as one of I/O modules.

Different configurations are possible (to be specified with an order).

Configuration	COM1	COM2	
1	RS232/485	/	
2	RS232/485	RS232 or RS485	
3 ⁽¹⁾	Ethernet & USB	/	
4 ⁽¹⁾	Ethernet & USB	RS232 or RS485	
(1) Galvanic separation between Eth. and USB is 1 kVACRMS			

Table 4: List of communication configurations

MC 740 *Multifunction Meter* supports standard communication protocols MODBUS RTU, TCP and DNP3 L1.

Analogue extender EX104 (accessory)

If there is a demand for additional analogue outputs analogue extender EX104 can be used.

It is a standalone unit, connected to meter via module 2 (module for communication with EX104 needs to be specified at order). Up to 4 analogue outputs can be used with one meter. More information can be found in Analogue extender EX104 data sheet (E P22.495.400).

TECHNICAL DATA

Measurement inputs

Nominal frequency range 50 Hz, 60 Hz Measuring frequency range 16 Hz-400 Hz

Voltage measurements:

Number of channels	4 (1)
Sampling rate	32 kHz
Min. voltage for sync.	1 V _{rms}
Nominal value (U_N)	500 V _{LN} , 866 V _{LL}
Max. measured value (cont.)	600 V _{LN} ; 1000 V _{LL}
Max. allowed value	$1.2 \times U_N$ permanently
	$2 \times U_N$; 10 s
Consumption	$< U^2 / 4.2 M\Omega$ per phase
Input impedance	4.2M Ω per phase

 $^{^{(1)}}$ 4^{th} channel is used for measuring U _{EARTH-NEUTRAL}

Current measurements:

Number of channels	3
Sampling rate	32 kHz
Nominal value (I _{NOM})	1 A, 5 A
Max. measured value (I_1 - I_3	12.5 A sin.
only)	
Max. allowed value	15 A cont.
(thermal)	
	≤ 300 A; 1s
Consumption	$< I^2 \times 0.01\Omega$ per phase

Basic accuracy under reference conditions

Accuracy is presented as percentage of reading of the measurand except when it is stated as an absolute value.

<u> </u>		
Measurand	Accuracy class	According to
Voltage L-N, L-L	0.2	EN 61557-12
Current	0.2	EN 61557-12
Active power $(I_N = 5 A)$	0.2	EN 61557-12
Active power $(I_N = 1 A)$	0.5	EN 61557-12
Active energy	0.5\$	EN 62053-22
Reactive energy	1	EN 62053-24
Frequency (f)	0.02 Class A	EN 61557-12
Power factor (PF)	0.5	EN 61557-12
THD (U)	0.3 Class A / I	EN 61557-12
THD (I)	0.3	EN 61557-12
Real time clock (RTC)	< ± 1 s/day	IEC 61000-4-30

For complete overview of accuracy for all measured parameters and measuring ranges see Users' manual.

INPUT/OUTPUT modules

MC 740 Multifunction Meter is equipped with two main I/O slots. According to order, each slots' function can be as presented in a table below.

Module type	Number of I/O per module
Relay output (RO)	2
Analogue output (AO)	2 x 20 mA
Analogue input (AI)	2
Pulse output (PO)	2
Pulse input (PI)	2
Bistable Digital output (BO)	1
Digital output (DO)	2
Digital input (DI)	2
Tariff input (TI)	2
Additional communication port (COM2)	1
Status output (WO)	1 + 1xRO
Communication port for analogue extender EX104	1
extender EX104	-

Table 5: List of available I/O modules

Analogue input:

Three types of analogue inputs are suitable for acquisition of low voltage DC signals from different sensors. According to application requirements it is possible to choose current, voltage or resistance (temperature) analogue input. They all use the same output terminals.

MiQen software allows setting an appropriate calculation factor, exponent and required unit for representation of primary measured value (temperature, pressure, wind speed ...)

DC current input:

Nominal input range	–20 mA020 mA (±20%)
Input resistance	20 Ω
Accuracy	0.5 % of range
Temperature drift	0.01%/°C
Conversion resolution	16 bit (sigma-delta)
	internally referenced
Analogue input mode	Single-ended

DC voltage input:

2

De voitage input.	
Nominal input range	-10 V010 V (±20%)
Input resistance	100 kΩ

0.5 % of range Accuracy 0.01% / °C Temperature drift Conversion resolution

16 bit (sigma-delta) internally referenced

Analogue input mode Single-ended

Resistance (temperature) input:

 0Ω - 200Ω (max. 400Ω) Nominal input range (low)* PT100 (-200°C-850°C) Nominal input range $0 k\Omega - 2 k\Omega$ (max. $4 k\Omega$) (high)* PT1000 (-200°C-850°C) Connection 2-wire **Accuracy** 0.5 % of range Conversion resolution 16 bit (sigma-delta) internally

referenced

Analogue input mode Single-ended * Low or high input range and primary input value (resistance or temperature) are set by the MiQen setting software

Analogue output:

Output range 0 mA...20 mA 0.5% of range **Accuracy** Max. burden 150 Ω Linearization Linear, Quadratic No. of break points Output value limits \pm 120% of nominal output Response time depends on set general average (measurement and interval analogue output) (0.1 s - 5 s)Residual ripple < 1 % p.p.

Outputs may be either short or open-circuited. They are electrically insulated from each other and from all other circuits.

Output range values can be altered subsequently (zoom scale) using the setting software, but a supplementary error results.

Digital input:

Purpose Tariff input, Pulse input, General purpose digital input

Tariff input

No. of inputs per 2 module Rated voltage 5 V...48 V_{AC/DC}*

110 ± 20 % V_{AC/DC}*

 $230 \pm 20 \% V_{AC/DC}^*$ *Depends on a build in hardware

45 Hz...65 Hz Frequency range

Pulse input

No. of inputs per

module 5 V- 48 V_{DC} (±20 %) Rated voltage

 $8 \text{ mA (at } 48 \text{ V}_{DC} + 20 \%)$ Max. current Min. pulse width 0.5 ms

Min. pulse period 2 ms

SET voltage (40...120) % of rated voltage (0...10) % of rated voltage RESET voltage

General purpose digital input

No. of inputs per 2 module

5 V...48 V_{AC/DC}* Voltage

 $110 \pm 20 \% V_{AC/DC}^*$ $230 \pm 20 \% V_{AC/DC}^*$

*Depends on a build in hardware

Digital output:

Relay switch Type No. of outputs per

module

Purpose Alarm output, General purpose

Digital output, Pulse output, Status output (watchdog)

Rated voltage 230 $V_{AC/DC} \pm 20\% \, \text{max}$ Max. switching current 1000 mA

Contact resistance $\leq 100 \text{ m}\Omega \text{ (100 mA, 24 V)}$ *Impulse* Max. 4000 imp/hour Min. length 100 ms

Type Bistable Relay switch

No. of outputs per

module Alarm output, General purpose Purpose digital output

Max. switching power 40 VA Rated voltage $230 V_{AC/DC} \pm 20\% max$ Max. switching current 1000 mA

Contact resistance $\leq 100 \text{ m}\Omega \text{ (100 mA, 24 V)}$

Optocoupler open collector switch Type

No. of outputs per module

Purpose Pulse output Rated voltage 40 V_{AC/DC}

30 mA ($R_{ONmax} = 8 \Omega$) Max.switching Pulse length programmable (2 ms... 999 ms)

Relay switch Type No. of outputs 1 x watchdog + 1 x relay output

Normal operation Relay in ON position Failure detection ≈ 1.5 s delay

Rated voltage 230 $V_{AC/DC}$ ±20 % max

1000 mA Мах. switching

current

Contact resistance $\leq 100 \text{ m}\Omega (100 \text{ mA, } 24 \text{ V})$

Power Supply

Power-on transient current

Standard: CAT III 300V Nominal voltage AC 48 V... 276 V Nominal frequency 40 Hz... 65 Hz Nominal voltage DC 20 V... 300 V Consumption (max. all I/O) < 8 VA

AC power supply CAT III 300 V Nominal voltage AC 110 V, 230 V or 400 V Nominal frequency 40 Hz... 65 Hz < 8 VA Consumption (max. all I/O)

Safety

protection class II Safety:

functional earth terminal must be

0 @ connected to earth potential! Voltage inputs via high impedance

Double insulation for I/O ports and COM ports

Pollution degree:

Test voltages: U_{AUX} against SELV circuits -

3.51 kV rms

< 20 A; 1 ms

Other circuits to functional earth - 2.21

kV rms

EMC: Directive on electromagnetic

compatibility 2004/108/EC

In compliance with EN 61326-1:2013 for

industrial enviroment

Protection: In compliance with

EN 60592: 1997/A1:2000

Front side (with protection cover for

memory slot: IP40

Rear side (with protection cover): IP20

Mechanical

96 mm × 96 mm × 96.5 mm **Dimensions**

Mounting Panel mounting 96 mm × 96 mm

Required mounting 92 mm × 92 mm

hole

PC/ABS **Enclosure** material

Flammability Acc. to UL 94 V-0 Weight 550 g **Enclosure** material PC/ABS

Acc. to UL 94 V-0

Ambient conditions

Ambient temperature K55 temperature class

Acc. to EN 61557-12

-10 °C ...55 °C

-40 °C to +70 °C Storage temperature

Ambient humidity ≤75% r.h. (no condensation) Max. storage and transport \leq 90% r.h. (no condensation)

humidity

± 20 ppm / K Voltage and current max. temperature influence limit (10 V-600 V; 0.05 A-10 A)

 $(T_{amb}: -30^{\circ}C \text{ to } +70^{\circ}C)$

Real time clock

A built-in real time clock is also without external synchronization very stable when device is connected to auxiliary power supply. For handling shorter power interruptions without influence on RTC, device uses high capacity capacitor battery. It ensures auxiliary supply (for internal RTC only) for more than two days of operation (6 years with battery).

To enable clock operation backup supercap or battery is built-in.

Supercap life span approx. 2 days
Type Low power embedded RTC
RTC stability <1 sec / day
Battery life span approx. 6 years (at 23 °C)

Connection cables

MC 740 Multifunction Meter is equipped with European style pluggable terminals for measuring voltages, auxiliary supply, communication and I/O modules.

Measuring current cables can be connected in two ways. They shall be attached as through-hole connection without screwing or as detachable screw terminals.

NOTE: Stranded wire must be used with insulated end sleeve to assure firm connection.

Voltage inputs (4) $\leq 2.5 \text{ mm}^2$, AWG 24-12 single wireCurrent inputs (3) $\leq \emptyset$ 6 mm one conductor with insulationSupply (3) $\leq 2.5 \text{ mm}^2$, AWG 24-12 single wireCom (5), I/O (6) $\leq 2.5 \text{ mm}^2$, AWG 24-12 single wire

MiQen - setting and acquisition Software

MiQen software is intended for supervision of *MC 740* and many other instruments on a PC. Network and the device setting, display of measured and stored values and analysis of stored data in the device are possible via the serial, Ethernet or USB communication. The information and stored measurements can be exported in standard Windows formats. Multilingual software functions on Windows XP operating system or higher.

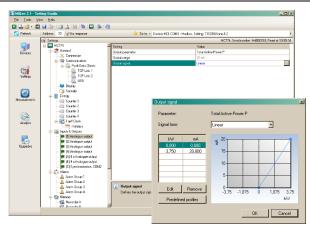


Figure 7 MiQen setting and acquisition software

MiQen software is intended for:

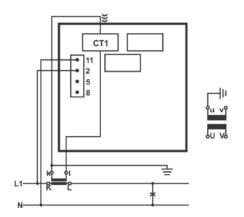
- Setting all of the instruments parameters (online and offline).
- Viewing current measured readings and stored data.
- Setting and resetting energy counters.
- Complete I/O modules configuration.
- Evaluation of the electricity supply quality in compliance with SIST EN 50160.
- Viewing and exporting time-stamped PQ anomaly details.
- Upgrading instruments firmware.
- Searching the net for devices.
- Virtual interactive instrument.
- Comprehensive help support.

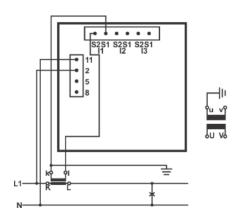
NOTE!

MiQen software functions depend on the type of connected device.

CONNECTION

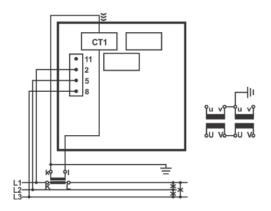
Two possible connections of current are available, through-hole connection and terminal connection (see pictures below).

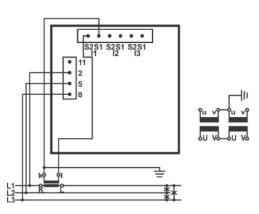

System/connection


Through-hole connection assignment

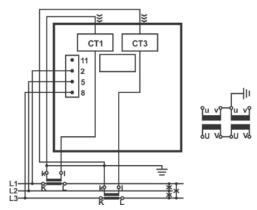
Terminal connection assignment

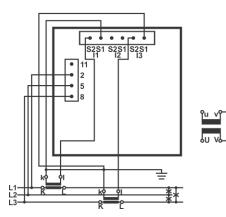
1b (1W1b)


Single-phase connection



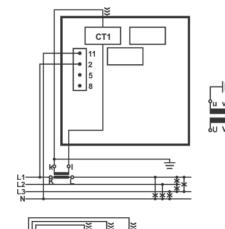
3b (1W3b)

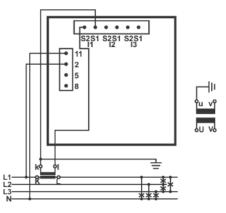

Three-phase, three-wire connection with balanced load



3u (2W3u)

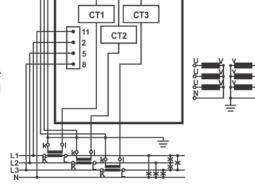
Three-phase, three-wire connection with unbalanced load.

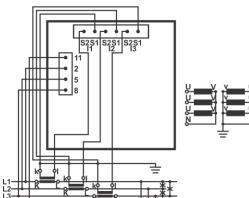

System/connection


Through-hole connection assignment

Terminal connection assignment

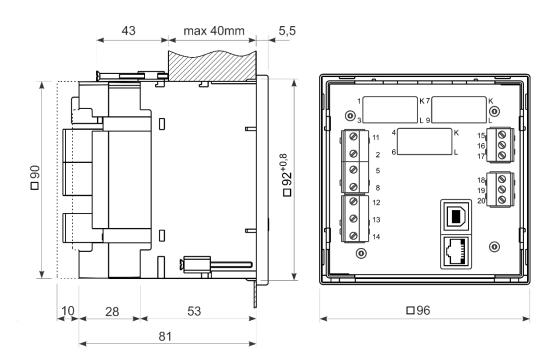
4b (1W4b)

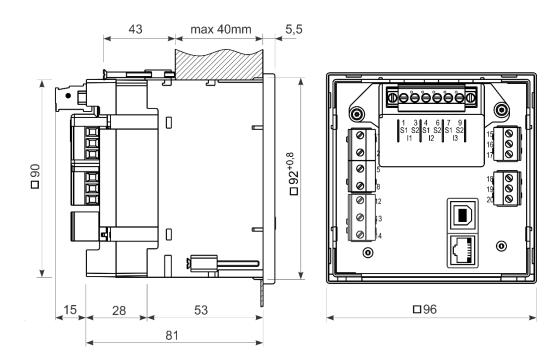

Three-phase, four wire connection with balanced load



4u (3W4)

Three-phase, four wire connection with unbalanced load.





DIMENSIONAL DRAWING

Dimensions for MC 740 (through-hole connection assignment):

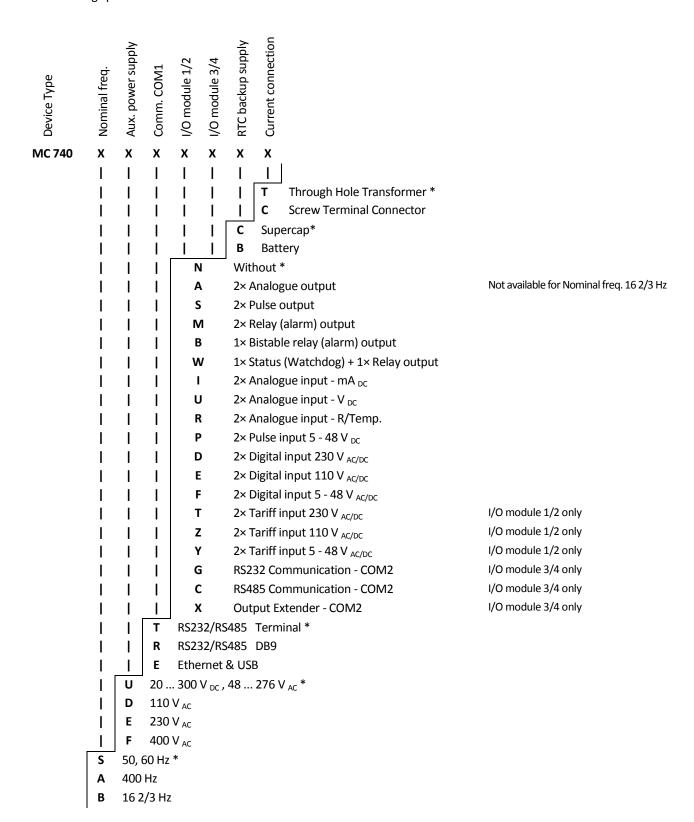
Dimensions for MC 740 (terminal connection assignment):

Connection table

Function		Connection	Comment	
		IL1	1/3	CAT II 600V
	AC current	IL2	4/6	CAT III 300V
		IL3	7/9	
Measuring input:		UL1	2	
	AC voltage	UL2	5	• CAT II 600V
	AC VOITage	UL3	8	CAT III 300V
		UN	11	
		2 +	15	
	Module 1/2	2 ■ (common)	16	
Innuts (outputs)		2 +	17	
Inputs/outputs:		2 +	18	
	Module 3/4	❷≣ (common)	19	
		2 +	20	
Auxiliary power supply:		+ / AC (L)	13	CAT III 300V
		-/AC(N)	14	•
, ,			12	GROUND terminal must be always connected!!
	RS485	A	21	RS232 and RS485 are both supported, but only
Communication:	K3485	В	22	one at the time can be used!
Communication.	RS232	RX	23	In second of Ethernot/USD communication
		GND	24	In case of Ethernet/USB communication, terminals from 21 to 25 are not used
		TX	25	(unconnected).
	RS232	Rx	3	
		D	5	
Communication: DB9 female		Tx	2	
	DC/10E	В	7	
	RS485	А	8	

Table 6: Connections

MC 770 Quality Analyzer 15



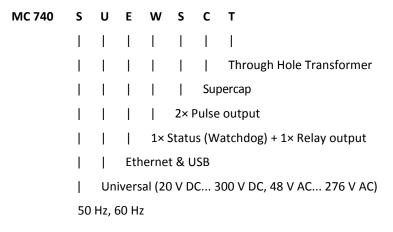
DATA FOR ORDERING

When ordering *MC 740 Multifunction Meter*, all required specifications shall be stated in compliance with the ordering code. Additional information could be stated. Note that fixed or programmable specifications are not part of ordering code.

General ordering code

The following specifications shall be stated:

^{*-} standard


Example of ordering:

MC 740 with a universal supply is connected to 230 V voltage and 5 A secondary current on 50 Hz network. Ethernet & USB communication, watchdog output (plus one relay output) as I/O 1/2 and two pulse outputs as I/O 3/4. RTC with supercap supply. Through-hole type current transformers.

Voltage and current nominal value are due to auto-range fixed to max. nominal value and are therefore omitted from ordering code.

Connection type is user programmable and is therefore omitted from ordering code. Default is 4u connection.

Example ordering code:

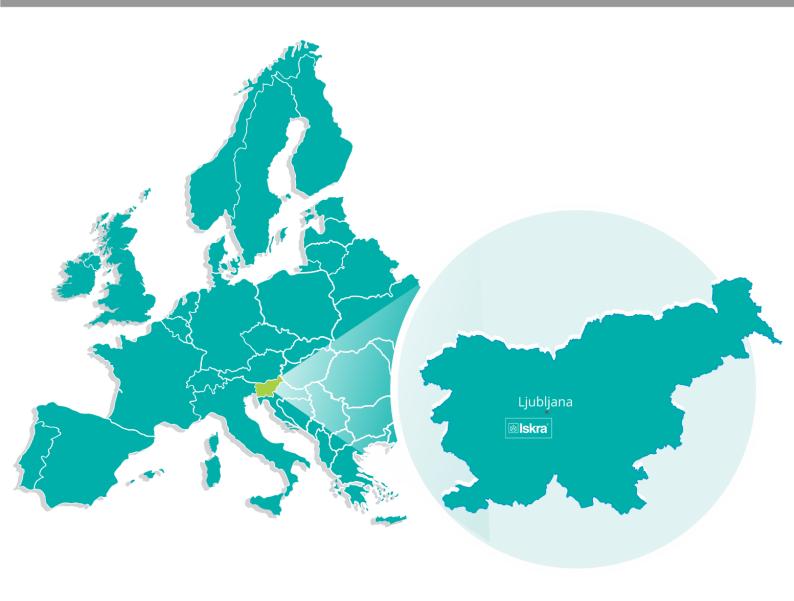
DICTIONARY:

PQ Power Quality alias Voltage Quality

RMS Root Mean Square

PA Power angle (between current and voltage)

PF Power factor


VT Voltage measuring transformer
CT Current measuring transformer
THD Total harmonic distortion
Ethernet IEEE 802.3 data layer protocol

MODBUSIndustrial protocol for data transmissionMiQenISKRA setting and acquisition Software

AC Alternating quantity
RTC Real Time Clock

IRIG Inter-range instrumentation group time codes

NTP Network Time Protocol

Iskra, d.o.o. **BU** Ljubljana

Stegne 21

SI-1000, Ljubljana Phone: + 386 1 513 10 00

Iskra IP, d.o.o.

Vajdova ulica 71 SI-8333, Semič Phone: +386 7 384 94 54

Iskra Sistemi - M dooel

Ul, Dame Gruev br. 16/5 kat 1000, Skopje Phone: +389 75 444 498

Iskra, d.o.o. **BU Capacitors**

Vajdova ulica 71 SI-8333, Semič Phone: +386 7 38 49 200

Iskra STIK, d.o.o.

Ljubljanska cesta 24a SI-4000, Kranj Phone: +386 4 237 22 33

Iskra Commerce, d.o.o.

Hadži Nikole Živkoviča br. 2 11000, Beograd Phone: +381 11 328 10 41

Iskra, d.o.o. **BU MIS**

Ljubljanska c. 24a SI-4000 , Krani Phone: +386 4 237 21 12

Iskra Lotrič, d.o.o.

Otoče 5a SI-4244 , Podnart Phone: +386 4 535 91 68

Iskra Hong Kong Ltd.

33 Canton Road, T.S.T. 1705, China HK City Phone: +852 273 00 917

Iskra, d.o.o. **BU Batteries & Potentiometers**

Šentvid pri Stični 108 SI-1296 , Šentvid pri Stični Phone: +386 1 780 08 00

Iskra ODM, d.o.o.

Otoče 5a 4244 , Podnart Phone: +386 1 513 10 00

Iskra, d.o.o. **BU Electroplating**

Glinek 5 SI-1291 , Škofljica Phone: +386 1 366 80 50

Iskra Tela L, d.o.o.

Omladinska 66 78250 , Laktaši Phone: +387 51 535 890

